Skip to main content

In-Depth View: Functional Characteristics of CSF Shunt Devices (Pros and Cons)

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Textbook of Pediatric Neurosurgery

Abstract

The treatment of hydrocephalus or similar diseases requires shunt devices. Thousands of patients live with shunts over decades, in the hope that the regulation of their ICP could improve their physical condition. This chapter discusses the pros and cons of the different types of devices and comprehends the technological development of valves since 1949. The chapter starts with the description of the possibilities for classification and the requirements for shunts, further of their functioning against the background of the physiological preconditions like ICP and normal CSF flowrates. The question is, thereby, which physical factors influence the working of devices, especially how they depend on the posture of patients and how the valve technologies answer those problems. Based on extensive clinical and laboratory studies, the author outlines the most common devices of the last 60 years and discusses simple differential pressure valves as well-adjustable, antisiphon, gravitational, and low-flow valves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbott R, Sandler AL (2016) Cerebrospinal shunts: selection of components, techniques for insertion and for revision. In: Kombogiorgas D (ed) The cerebrospinal fluid shunts. Nova Biomedical, New York, pp 221–244

    Google Scholar 

  • Akbar M, Aschoff A, Georgi J, Nennig E, Heiland S, Abel R, Stippich C (2012) Adjustable cerebrospinal fluid shunt valves in 3.0-Tesla MRI: a phantom study using explanted devices. RöFo 2010 187(7):594–602

    Google Scholar 

  • Alavi S, Schulz M, Schaumann A, Schwarz K, Thomale UW (2017) Valve exchange towards an adjustable differential pressure valve with gravitational unit, clinical outcome of a single-center study. Childs Nerv Syst 33(5):759–765

    Article  CAS  PubMed  Google Scholar 

  • Ames RH (1967) Ventriculo-peritoneal shunts in the management of hydrocephalus. J Neurosurg 27:525–529

    Article  CAS  PubMed  Google Scholar 

  • Arnell K, Koskinen LO, Malm J, Eklund A (2009) Evaluation of Strata NSC and Codman hakim adjustable cerebrospinal fluid shunts and their corresponding antisiphon device. J Neurosurg Ped 3(3):166–172

    PubMed  Google Scholar 

  • Aschoff A (1995) In-vitro-Tests von Hydrocephalus-Ventilen. Inauguration thesis (in German, 537 pages), University of Heidelberg

    Google Scholar 

  • Aschoff A, Osterloh M, Kunze S (1990) Longtime-tests of 34 hydrocephalus-Valves. Child’s Nerv Syst 6:282

    Google Scholar 

  • Aschoff A, Kremer P, Benesch C, Klank A, Kunze S (1991) Shunt-technology and overdrainage. Eur J Pediatr Surg 1(Suppl I):49–50

    PubMed  Google Scholar 

  • Aschoff A, Benesch C, Kremer P, Klank A, Osterloh M, Fruh K (1993) The solved and unsolved problems of hydrocephalus-valves. A critical comment. Adv Neurosurg 21:103–114

    Article  Google Scholar 

  • Aschoff A, Benesch C, Kremer P, Fruh K, Klank A, Kunze S (1995) Overdrainage and shunt-technology. A critical comparison of programmable, hydrostatic and variable-resistance-valves and flow-reducing devices. Childs Nerv Syst 11:193–200

    Article  CAS  PubMed  Google Scholar 

  • Aschoff A, Kremer P, Hashemi B, Benesch C, Kunze S (1996) Technical design of 130 hydrocephalus valves. An overview on historical, available, and prototype valves. Childs Nerv Syst 12:503

    Google Scholar 

  • Aschoff A, Kremer P, Hashemi B, Kunze S (1999) The scientific history of hydrocephalus and its treatment. Neurosurg Rev 22:67–93

    Article  CAS  PubMed  Google Scholar 

  • Aschoff A, Richard KE, Block F, Schnippering H, Kunze S (2001) Shunt-telemetry over 6 weeks at home under daily life conditions. Childs Nerv Syst 17:433–434

    Google Scholar 

  • Aschoff A, Kiefer M, Kehler U, Hashemi B, UnterbergA (2009) Adjustable gravitational valves. From the conception in 1996 to first implantations 2008. Cerebrospinal Fluid Res 6(Suppl 2):S22

    Google Scholar 

  • Bayston R, Grove N, Siegel J, Lawellin D, Barsham S (1989) Prevention of hydrocephalus catheter colonisation in vitro by impregnation with antimicrobials. J Neurol Neurosurg Psychiatry 52:605–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beez T, Sarikaya-Sewert S, Bellstädt L, Mühmer M, Steiger HJ (2014) Fixed-pressure gravity-assisted valves and adjustable differential pressure valves in the treatment of pediatric hydrocephalus – a single center study of valve performance in the clinical setting. Childs Nerv Syst 30(2):293–7

    Google Scholar 

  • Benninger C, Schäfer H, Mittermaier G, Wöhrle J, Aschoff A (1992) Liquoraszites bei hydrocephalus hypersecretorius. In: Aktuelle Neuropädiatrie 1992. Ciba-Geigy-Verlag, Wehr, pp 267–269

    Google Scholar 

  • Bering EA Jr (1955) Choroid plexus and arterial pulsation of cerebrospinal fluid. Arch Neurol Psych 73:165–172

    Article  Google Scholar 

  • Beuriat PA, Puget S, Cinalli G, Blauwblomme T, Beccaria K, Zerah M, Sainte-Rose C (2017) Hydrocephalus treatment in children: long-term outcome in 975 consecutive patients. J Neurosurg Pediatr 21:1–9

    Google Scholar 

  • Biedermann N (2011) Langzeitverläufe 10 Jahre nach der Implantation von verstellbaren Medos-Ventilen 1995–1999. Medical thesis, University of Heidelberg

    Google Scholar 

  • Boon AJW, Tans JTJ, Delwel EJ, Egeler-Peerdeman SM, Hanlo PW, Wurzer HAL, Aavezaat CJJ, de Jong D, Gooskens RHJM, Hermans J (1998) Dutch Normal-Pressure Hydrocephalus Study: randomized comparison of low- and medium pressure shunts. J Neurosurg 88:490–495

    Article  CAS  PubMed  Google Scholar 

  • Brydon HL, Bayston R, Hyyward R, Harkness W (1996) The effect of protein and blood cells on the flow-pressure characteristics of shunts. Neurosurgery 38:498–505

    CAS  PubMed  Google Scholar 

  • Cedzich C, Wießner A (2003) The treatment of hydrocephalus in infants and children using hydrostatic valves. Zentralblt Neurochir 64:51–57

    Article  CAS  Google Scholar 

  • Chhabra DK, Agrawal GD, Mittal P (1993) “Z” flow hydrocephalus shunts, a new approach to the problem of hydrocephalus, the rationale behind its design and the initial results of pressure monitoring after “Z” flow shunt implantation. Acta Neurochir 121:43–47

    Article  CAS  PubMed  Google Scholar 

  • Choux M, Genitori L, Lang D, Lena G (1992) Shunt implantation: reducing the incidence of shunt infection. J Neurosurgery 77:875–880

    Article  CAS  Google Scholar 

  • Codman (1992) Codman-Medos-sales training manual. Codman, Randolph

    Google Scholar 

  • Czosnyka Z, Czosnyka M, Whitehouse H, Pickard JD (1997) Hydrodynamic properties of hydrocephalus shunts. United Kingdom shunt evaluation laboratory. J Neurol Neurosurg Psychiatry 62:43–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czosnyka Z, Czosnyka M, Richards HK, Pickard JD (1998) Posture-related overdrainage: comparison of the performance of 10 hydrocephalus shunts in vitro. Neurosurgery 42:327–334

    Article  CAS  PubMed  Google Scholar 

  • Czosnyka ZH, Czosnyka M, Richards HK, Pickard JD (2002) Laboratory evaluation of hydrocephalus shunts – conclusion of the U.K. shunt evaluation programme. Acta Neurochir 144:525–538

    Article  CAS  PubMed  Google Scholar 

  • Decq JL, Barat L, Duplessis E, Leguerinel C, Gendrault P (1995) Shunt failure in adult hydrocephalus: flow-controlled shunt versus differential pressure shunts - a cooperative study in 289 patients. Surg Neurol 43:333–339

    Article  CAS  PubMed  Google Scholar 

  • Dette K, Hlavac M, Vienenkoetter B, Unterberg A, Aschoff A (2008) Urgent adjustment of variable Medos-, Sophysa- and Miethke-ProGAV-valves with standard permanent magnets. Possibilities and limitations hydrocephalus. Clin Neurol Neurosurg 110(Suppl 1):35

    Google Scholar 

  • DiRocco C, Marchese E, Velardi F (1994) A survey of the first complication of newly implanted CSF shunt devices for the treatment of nontumoral hydrocephalus. Childs Nerv Syst 10:321–327

    Article  CAS  Google Scholar 

  • Drake JM, Sainte-Rose C (1995) The shunt book. Blackwell Science, Cambridge, MA

    Google Scholar 

  • Drake JM, daSilva M, Rutka JT (1993) Functional obstruction of an Antisiphon device by raised tissue capsule pressure. Neurosurgery 32:137–139

    Article  CAS  PubMed  Google Scholar 

  • Drake JM, Kestle JRW, Milner R, Cinalli G et al (1998) Randomized trial of cerebrospinal fluid shunt valve design in pediatric hydrocephalus. Neurosurgery 43:294–305

    Article  CAS  PubMed  Google Scholar 

  • Eklund A, Koskinen LOD, Malm J (2004) Features of the Sinushunt and its influence on the cerebrospinal fluid system. J Neurol Neurosurg Psychiatry 75:1156–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ekstedt J, Friden H (1980) Hydrodynamic properties of CSF shunt systems. In: Shulmann K, Marmarou A, Miller JD, Becker DP, Hochwald GM, Brock M (eds) Intracranial pressure IV. Springer, Berlin/Wien/New York, pp 483–485

    Chapter  Google Scholar 

  • Elixmann IM, Kwiecien M, Goffin C, Walter M, Misgeld B, Kiefer M, Steudel WI, Radermacher K, Leonhardt S (2014 Sep) Control of an electromechanical hydrocephalus shunt – a new approach. IEEE Trans Biomed Eng 61(9):2379–2388

    Google Scholar 

  • Eymann R, Steudel WI, Kiefer M (2007) Pediatric gravitational shunts: first results from a prospective study. J Neurosurg Pediatr 106(3 Suppl):179–184

    Article  Google Scholar 

  • Forrest DM (1962) Flow characteristics of the Spitz-Holter valve. Develop Med Child Neurol 4:295–297

    Article  Google Scholar 

  • Fox JD, Portnoy HD, Shulte RR (1973) Cerebrospinal fluid shunts: an experimental evaluation of flow rates and pressure values in the anti-siphon valve. Surg Neurol 1:299–302

    CAS  PubMed  Google Scholar 

  • Freimann FB, Luhdo ML, Rohde V, Vajkoczy P, Wolf S, Sprung C (2014) The Frankfurt horizontal plane as a reference for the implantation of gravitational units: a series of 376 adult patients. Acta Neurochir (Wien) 156(7):1351–6

    Article  PubMed  Google Scholar 

  • Goodrich JT (2016) Historical vignettes on the medical and surgical treatment of hydrocephalus. In: Kombogiorgas D (ed) The cerebrospinal fluid shunts. Nova Biomedical, New York, pp 1–20

    Google Scholar 

  • Gruber RW, Roehrig B (2010) Prevention of ventricular catheter obstruction and slit ventricle syndrome by the prophylactic use of the Integra antisiphon device in shunt therapy for pediatric hypertensive hydrocephalus: a 25-year follow-up study. J Neurosurg Pediatr 5(1):4–16

    PubMed  Google Scholar 

  • Gruber R, Jenny P, Herzog B (1984) Experiences with the antisiphon-device (ASD) in shunt therapy of pediatric hydrocephalus. J Neurosurg 61:156–162

    Article  CAS  PubMed  Google Scholar 

  • Hakim S (1973) Hydraulic and mechanical miss-matching of valve shunts used in the treatment of hydrocephalus: the need for a servo-valve shunt. Dev Med Child Neurol 15:646–653

    Article  CAS  PubMed  Google Scholar 

  • Hakim CA (1985) The physics and physiopathology of the hydraulic complex of the central nervous system. Thesis, Massachusetts Institute of Technology, Cambridge MA (fig 25)

    Google Scholar 

  • Hakim S, Hakim C (1984) Patent of the adjustable Medos-Hakim-Valve 21.07.83 US 516137; 08.12.83 US 559864; 0812.83 US 559865; European patent, application no EP 90202828.1, 23.07.84

    Google Scholar 

  • Hakim S, Duran de la Roche F, Burton JD (1973) A critical analysis of valve shunts used in the treatment of hydrocephalus. Dev Med Child Neurol 15:230–255

    Article  CAS  PubMed  Google Scholar 

  • Hanlo PW, Cinalli G, Vandertop WP, Faber JA, Bogeskov L, Borgesen SE, Boschert J, Chumas P, Eder H, Pople IK, Serlo W, Vitzthum E (2003) Treatment of hydrocephalus determined by the European Orbis Sigma Valve II survey: a multicenter prospective 5-year shunt survival study in children and adults in whom a flow-regulating shunt was used. J Neurosurg 99(1):52–57

    Article  PubMed  Google Scholar 

  • Henle A (1896) Beitrag zur Pathologie und Therapie des Hydrocephalus. Mitteilungen Grenzgebiet Med Chir 1:264–302

    Google Scholar 

  • Hertle DN, Tilgner J, Fruh K, Keinert T, Hagenston AM, Unterberg A, Aschoff A (2010) Reversible occlusion (on-/off-) valves in shunted tumor patients. Neurosurg Rev 34(2):235–242

    Article  PubMed  Google Scholar 

  • Horton DD, Pollay M (1990) Fluid flow performance of a new siphon-control device for ventricular shunts. J Neurosurg 72:926–932

    Article  CAS  PubMed  Google Scholar 

  • Ingraham FD, Matson DD, Alexander E Jr, Woods RP (1948) Studies in the treatment of experimental hydrocephalus. J Neuropath Exp Neurol 7:123–143

    Article  CAS  PubMed  Google Scholar 

  • ISO 7197:1989 (E) TC150/SC 3 - N 45 (1989) International Standard: Neurosurgical implants – Sterile, single-use hydrocephalus shunts and components. First edition, 1989-08-01. International Organization for Standardization, Genéva

    Google Scholar 

  • Jetzki S, Leonhardt S (2018) An electronic implant for hydrocephalus therapy assistance. Conf Proc IEEE Eng Med Biol Soc 2008:715–718

    Google Scholar 

  • Johanson CE (2016) Physiology and pathology of cerebrospinal fluid: pressure, formation, composition, flow and reabsorption. In: Kombogiorgas D (ed) The cerebrospinal fluid shunts. Nova Biomedical, New York, p 21

    Google Scholar 

  • Kadowaki C, Hara M, Numoto M, Takeuchi K, Saito I (1995) CSF shunt physics: factors influencing in shunt CSF flow. Childs Nerv Syst 11:203–206

    Article  CAS  PubMed  Google Scholar 

  • Kehler U, Kiefer M, Eymann R, Wagner W, Tschan CA, Langer N, Rohde V, Ludwig HC, Gliemroth J, Meier U, Lemcke J, Thomale UW, Fritsch M, Krauss JK, Mirzayan MJ, Schuhmann M, Huthmann A (2015) Prosaika: A prospective multicenter registry with the first programmable gravitational device for hydrocephalus shunting. Clin Neurol Neurosurg 137:132–136

    Article  PubMed  Google Scholar 

  • Keith HD, Watts C (1983) Testing of cerebrospinal fluid shunt systems under dynamic flow conditions. Med Instrum 17:297–302

    CAS  PubMed  Google Scholar 

  • Kestle JR, Walker ML for the Strata Investigators (2005) A multicenter prospective cohort study of the STRATA valve for the management of hydrocephalus in pediatric children. J Neurosurg Pediatr 102(2):141–145

    Article  Google Scholar 

  • Kestle J, Drake J, Milner R et al (2000) Long term follow-up from the shunt design trial. Pediatr Neurosurg 31:230–236

    Article  Google Scholar 

  • Kiefer M, Eymann R, Meier U (2002) Five years experience with gravitational shunts in chronic hydrocephalus of adults. Acta Neurochir 144:755–767. discussion 767

    Article  CAS  PubMed  Google Scholar 

  • Kombigiorgas DA (2016) Types and components of cerebrospinal fluid shunts. In: Kombogiorgas D (ed) The cerebrospinal fluid shunts. Nova Biomedical, New York, pp 85–98

    Google Scholar 

  • Kremer P, Aschoff A, St K (1994) Risks of using siphon-reducing devices. Childs Nerv Syst 10:231–235

    Article  CAS  PubMed  Google Scholar 

  • Kuffer F, Strub D (1971) Ein ligaturfreier Konnektor für Hydrocephalus-Ventile. (Vorschlag zu einem neuen Ventil). Z Kinderchir 9:293–301

    Google Scholar 

  • Lemcke J, Meier U, Müller M, Fritsch M, Kiefer M, Eymann R, Schumann M, Speil A, Kehler U, Langer N, Weber F, Remenez V, Stengel D, Ludwig HC, Rohde V (2013) Safety and efficacy of gravitational shunt valves in patients with idiopathic normal pressure hydrocephalus: a pragmatic, randomized, open level multicentre trial (SVASONA). J Neurol Neurosurg & Psychiatry 2013;01–8

    Google Scholar 

  • Lutz BR, Venkataraman P, Browd SR (2013) New and improved ways to treat hydrocephalus: pursuit of a smart shunt. Surg Neurol Int 4(Suppl 1):S38–S50

    Article  PubMed  PubMed Central  Google Scholar 

  • Malbrain M, Cheatham M, Kirkpatrick A et al (2006) Results from the international conference of experts on intra-abdominal hypertension and abdominal compartment syndrome. I. Definitions. Intens Care Med 32:1722–1732

    Article  Google Scholar 

  • Mangano FT, Menendez JA, Habrock T, Narayan P, Leonhard JR, Park TS, Smyth MD (2005) Early programmable valve malfunctions in pediatric hydrocephalus. J Neurosurg Pediatr 103(6 Suppl):501–507

    Article  Google Scholar 

  • McCullough DC (1986) Symptomatic progressive ventriculomegaly in hydrocephalus with patent shunt and anti-siphon devices. Neurosurgery 4:617–621

    Article  Google Scholar 

  • Miethke C (2016) Manufacture and function of cerebrospinal fluid shunts. In: Kombogiorgas D (ed) The cerebrospinal fluid shunts. Nova Biomedical, New York, pp 99–220

    Google Scholar 

  • Miethke C, Affeld K (1994) A new valve for the treatment of hydrocephalus. Biomed Tech 39:181–187

    Article  CAS  Google Scholar 

  • Nulsen FE, Spitz EB (1952) Treatment of hydrocephalus by direct shunt from ventricle to jugular vein. Surg Forum 2:399–403

    Google Scholar 

  • Oikonomou J, Aschoff A, Hashemi B, Kunze S (1999) New valves – new dangers? 22 valves (38 probes) designed in the nineties in ultralong-term test (365 days). Eur J Pediatric Surg 9(Suppl 1):23–26

    Article  Google Scholar 

  • Paes N (1996) A new auto-adjusting flow regulating device. Childs Nerv Syst 12:619–625

    Article  CAS  PubMed  Google Scholar 

  • Park J, Kim GJ, Hwang SK (2007) Valve inclination influences the performance of gravity-assisted valve. Surg Neurol 68:14–18

    Article  PubMed  Google Scholar 

  • Patwardhan RV, Nanda A (2005) Implanted ventricular shunts in the United States: the billion-dollar-a-year cost of hydrocephalus treatment. Neurosurgery 56:139–145

    Article  PubMed  Google Scholar 

  • Payr E (1908) Drainage der Hirnventrikel mittels frei transplantierter Blutgefäße; Bemerkungen über Hydrocephalus. Arch Clin Chir 87:801–885

    Google Scholar 

  • Piotrowicz A (2013) Die Hydrocephalusbehandlung mit verstellbaren Medos-Ventilen 1990–1994. Medical thesis, Univ. Heidelberg

    Google Scholar 

  • Portnoy HD (1989) Pat US 4,867,741 (2003) “Resistive Valve”. Concept study. Personal communication

    Google Scholar 

  • Portnoy HD, Schulte RR, Fox JL (1973) Antisiphon and reversible occlusion valves for shunting in hydrocephalus and preventing post-shunt subdural hematomas. J Neurosurg 38:729–738

    Article  CAS  PubMed  Google Scholar 

  • Pudenz RH, Russel FE, Hurd AM, Sheldon CM (1957) Ventriculo-auriculostomy. A technique for shunting cerebrospinal fluid into the right auricle. Preliminary report. J Neurosurg 14:171–179

    Article  CAS  PubMed  Google Scholar 

  • Raimondi AJ, Robinson JS, Kawanuera K (1977) Complications of ventriculo-peritoneal shunting and a critical comparison of the three-piece and one-piece systems. Childs Brain 3:321–342

    CAS  PubMed  Google Scholar 

  • Rayport M, Reiss J (1969) Hydrodynamic properties of certain shunt assemblies for the treatment of hydrocephalus. Part 2: pressure flow characteristics of the Spitz-Holter, Pudenz-Heyer, and Cordis-hakim shunt systems. J Neurosurg 30:463–467

    Article  Google Scholar 

  • Rekate HL (1980) Closed-loop control of intra-cranial pressure. Ann Biomed Eng 8:515–522

    Article  CAS  PubMed  Google Scholar 

  • Richard KE, Block FR, Ackermann CW, Britten E, Steinberg J, Weber M (1989) Untersuchung des Regelverhaltens von Shuntsystemen zur operativen Behandlung des Hydrocephalus. Abschlußbericht zum Forschungsvorhaben RI 328/3-2 der DFG

    Google Scholar 

  • Richards H, Seeley H, Pickard J (2007) Are adjustable valves effective? Data from the UK Shunt Registry. Fluids Barriers CNS 4(Suppl 1):S30

    Google Scholar 

  • Rohde V, Haberl EJ, Ludwig HC, Thomale UW (2009) First experiences with an adjustable gravitational valve in childhood hydrocephalus. J Neurosurg Pediatr 3:90–93

    Article  PubMed  Google Scholar 

  • Sainte-Rose Ch (1984) Patent publication, European Patent EP 0 115 973 A1, (05.01.1984

    Google Scholar 

  • Sainte-Rose C, Hooven MD, Hirsch JF (1987) A new approach in the treatment of hydrocephalus. J Neurosurg 66:213–226

    Article  CAS  PubMed  Google Scholar 

  • Schiebel P, Unterberg A, Aschoff A (2008) Success rate of adjusting Codman Medos programmable valves by using a new programmer with acoustic device. Clin Neurol Neurosurg 110(Suppl 1):S12

    Article  Google Scholar 

  • Schoener WF, Verheggen R, Reparon C, Markakis E (1991) Evaluation of shunt failures by compliance analysis and inspection of shunt valves and shunt materials, using microscopic or scanning electron microscopic techniques. In: Matsumoto S, Tamaki N (eds) Hydrocephalus. Pathogenesis and treatment. Springer, Tokyo-Berlin-Heidelberg, pp 452–472

    Google Scholar 

  • Serlo W, von Wendt L, Heikkinen ES, Heikkinen ER (1986) Ball and spring or core valve for hydrocephalus shunting? Ann Clin Res 18(Suppl 47):103–106

    PubMed  Google Scholar 

  • Sobotta J (1946) Atlas der deskriptiven Anatomie des Menschen, Urbahn und Schwarzenberg, Berlin-München-Wien, Fig. 18, p 29

    Google Scholar 

  • Sotelo J, Rubalcava MA, Gómez-Lata S (1995) A new shunt for hydrocephalus that relies on CSF production rather than on ventricular pressure. Initial clinical experiences. Surg Neurol 43:324–332

    Article  CAS  PubMed  Google Scholar 

  • Spitz EB (1961) Critical analysis of the ventriculo-vascular shunt in the treatment of hydrocephalus; résumé of statistics. Harvey Cushing Society, Mexico City. (cit. according DeLange 1977)

    Google Scholar 

  • Sprung C, Miethke C, Shaken K, Lanksch WR (1997) The importance of the dual-switch valve for the treatment of adult normotensive or hypertensive hydrocephalus. Eur J Pediatr Surg 7(Supp1):38–40

    Article  PubMed  Google Scholar 

  • Sundström N, Lagebrant M, Eklund A, Koskinen LD, Malm J (2017) Subdural hematomas in 1846 patients with shunted idiopathic normal pressure hydrocephalus: treatment and long-term survival. J Neurosurg. 2017 Oct 27:1–8

    Google Scholar 

  • Thomale UW, Gebert AF, Haberl H, Schulz M (2013) Shunt survival rates by using adjustable differential pressure valve combined with a gravitational valve (ProGAV) in pediatric neurosurgery. Childs Nerv Syst 29(3):425–431

    Google Scholar 

  • Trost HA, Claussen G, Heissler H, Gaab MR (1991) Testing the hydrocephalus shunt valve: long term bench test results of various new and implanted hydrocephalus shunt valves. The need for a model for testing shunt valves under physiological conditions. Eur J Pediatr Surg 1(Suppl I):38–40

    Article  PubMed  Google Scholar 

  • Tuli S, Drake J, Lawless J, Wigg M, Lamberti-Pasculli M (2000) Risk factors for repeated cerebrospinal shunt failures in pediatric patients with hydrocephalus. J Neurosurg 92:31–38

    Article  CAS  PubMed  Google Scholar 

  • Vienenkötter B, Unterberg A, Aschoff A (2008) Failures and suboptimal positions of gravitational valves at different implantation sites (retroauricular vs. thoracal). Clin Neurol Neurosurg 110(Suppl 1):S2

    Google Scholar 

  • Vlach JP, Négre P (2001) Adjustable valves. Future developments. Nerv Syst Child 26:248

    Google Scholar 

  • Wang VY, Barbarao NM, Lawton MT et al (2007) Complications of lumboperitoneal shunts. Neurosurgery 60:1045–1049

    Article  PubMed  Google Scholar 

  • Watts C, Keith HD (1983) Testing the hydrocephalus shunt valve. Childs Brain 10:217–228

    CAS  PubMed  Google Scholar 

  • Woerdeman PA, Cochrane DD (2014) Disruption of silicone valve housing in a Codman hakim precision valve with integrated Siphonguard. Neurosurg Peditatr 13(5):532–535

    PubMed  Google Scholar 

  • Yamada H, Funakoshi T, Ando T, Sakai N, Sakata K (1979) Clinical studies on prevention of overdrainage syndrome after ventriculoperitoneal shunt by use of an antisiphon ball valve. Childs Brain 5:556

    Google Scholar 

  • Zemack G, Romner B (2001) Seven years of clinical experience with the programmable Codman hakim valve: a retrospective analysis of 583 patients. J Neurosurg 92:941–948

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred Aschoff .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Aschoff, A. (2019). In-Depth View: Functional Characteristics of CSF Shunt Devices (Pros and Cons). In: Di Rocco, C., Pang, D., Rutka, J. (eds) Textbook of Pediatric Neurosurgery. Springer, Cham. https://doi.org/10.1007/978-3-319-31512-6_26-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31512-6_26-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31512-6

  • Online ISBN: 978-3-319-31512-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    In-Depth View: Functional Characteristics of CSF Shunt Devices (Pros and Cons)
    Published:
    02 April 2019

    DOI: https://doi.org/10.1007/978-3-319-31512-6_26-2

  2. Original

    In-Depth View: Functional Characteristics of CSF Shunt Devices (Pros and Cons)
    Published:
    25 September 2017

    DOI: https://doi.org/10.1007/978-3-319-31512-6_26-1