Skip to main content

Embryology, Classification, and Surgical Management of Bony Malformations of the Craniovertebral Junction

  • Living reference work entry
  • First Online:

Abstract

The bony craniovertebral junction (CVJ) can be conceptually divided into two components with respect to the governance of intersegmental movements and functional space for the nervous system. The first component consists mainly of a central pivot made up of the dens and the C2 vertebral body, but the basiocciput, though anatomically part of the foramen magnum, is embryologically and functionally in vertical linearity with the dens and is thus part of the central pillar. The second component consists of two ringed structures surrounding the central pivot, albeit eccentrically. They are the foramen magnum ring, comprising the lateral portion of the basiocciput (clivus), the exocciput including the occipital condyles, and the opisthion; and the atlantal ring, with its anterior and posterior arches and lateral masses. These two superimposing rings transmit the lower brainstem and upper cervical spinal cord, while permitting limited rotatory and flexion-extension motions upon each other and round the dental pivot. Straddling these two rings and anchoring upon them are the stabilizing ligaments between the pivot and the rings: the alar and apical dental ligaments at the upside of the pivot, the transverse atlantal ligament (TAL) across the main dental shaft, and the arching mantle of the tectorial membrane and cruciate ligament, strapping the clivus to the whole of the dens-axis assembly.

This is a preview of subscription content, log in via an institution.

References

  • Aoyoma H, Asamoto K (1988) Determination of somite cells: independence of cell differentiation and morphogenesis. Development 104:15–28

    Google Scholar 

  • Bagnall KM (1992) The migration and distribution of somite cells after labelling with the carbocyanine dye, DiI: the relationship of this distribution to segmentation in the vertebrate body. Anat Embryol 185:317–324

    Article  CAS  PubMed  Google Scholar 

  • Bagnall KM, Sander EJ (1989) The binding pattern of peanut lectin associated with sclerotome migration and the formation of the vertebral axis in the chick embryo. Anat Embryol 180:505–513

    Article  CAS  PubMed  Google Scholar 

  • Bellairs R (1980) The segmentation of somites in the chick embryo. Boll Zool 47:245–252

    Article  Google Scholar 

  • Burwood RJ (1970) The cranio-cervical junction. Anatomy, University of Bristol, Bristol

    Google Scholar 

  • Cattell JS, Filtzer DL (1965) Pseudosubluxation and other normal variations in the cervical spine in children. J Bone Joint Surg Am 47A:1295–1309

    Article  Google Scholar 

  • Cave AJE (1938) The morphological constitution of the odontoid process. J Anat 72:621

    Google Scholar 

  • Chevrel JP (1965) Occipitalization of the atlas. Arch Orthop Trauma Surg 13:104–108

    CAS  Google Scholar 

  • Chigira M, Kaneko K, Mashio D, Watanabe H (1994) Congenital hypoplasia of the arch of the atlas with abnormal segmentation of the cervical spine. Arch Orthop Trauma Surg 113:110–112

    Article  CAS  PubMed  Google Scholar 

  • Christ B, Wilting J (1992) From somites to vertebral column. Ann Anat 174:23–32

    Article  CAS  PubMed  Google Scholar 

  • Christ B, Jacob HJ, Jacob M (1978) On the formation of the myotomes in avian embryos. An experimental and scanning electron microscope study. Experientia 34:514–516

    Article  Google Scholar 

  • Christ B, Jacob HJ, Siefert R (1988) Über die Entwicklung der Zervikookzipitalen Übergangsregion. In: Hohmann D, Kügelgen B, Liebig K (eds) Neuroorthopädie, vol 4. Springer, Berlin/Heidelberg, pp 13–22

    Google Scholar 

  • Condie B, Capecchi MR (1993) Mice homozygous for a targeted disruption of Hox d-3 (Hox-4.1) exhibit anterior transformations of the first and second cervical vertebrae, the atlas and axis. Development 119:579–595

    CAS  PubMed  Google Scholar 

  • Couly GF, Coltey PM, Le Douarin NM (1993) The triple origin of skull in higher vertebrates: a study in quail-chick chimeras. Development 117:409–429

    CAS  PubMed  Google Scholar 

  • Crockard H, Stevens M (1995) Craniovertebral junction anomalies in inherited disorder: part of the syndrome or caused by the disorder? Eur J Pediatr 154:504–512

    Article  CAS  PubMed  Google Scholar 

  • Dalgleish AE (1985) A study of the development of thoracic vertebrae in the mouse assisted by autoradiography. Acta Anat 122:91–98

    Article  CAS  PubMed  Google Scholar 

  • David KM, Crockard A (2005) Congenital malformations of the base of the skull, atlas and dens. In: Benzel EC (ed) The cervical spine, 4th edn. Lippincott Williams and Wilkins, Philadelphia, pp 415–426

    Google Scholar 

  • David KM, Thorogood P, Stevens JM, Crockard HA (1997) The one bone spine: a failure of notochord/sclerotome signaling? Clin Dysmorphol 6:303–314

    Article  CAS  PubMed  Google Scholar 

  • David KM, Thorogood PV, Stevens JM, Crockard A (1999) The dysmorphic cervical spine in Klippel-Feil syndrome: interpretations from developmental biology. Neurosurg Focus 6(6):Article 1

    Article  Google Scholar 

  • Davis GK, Patel NH (1999) The origin and evolution of segmentation. Trends Cell Biol 9:M68–M72

    Article  CAS  PubMed  Google Scholar 

  • Davis GK, Jaramillo CA, Patel NH (2001) Pax group III genes and the evolution of insect pair-rule patterning. Development 128:3445–3458

    CAS  PubMed  Google Scholar 

  • Devi BI, Shenoy SN, Panigrahi MK, Chandramouli BA, Das BS, Jayakumar PN (1997) Anomaly of arch of atlas – a rare cause of symptomatic canal stenosis in children. Pediatr Neurosurg 26:214–218

    Article  CAS  PubMed  Google Scholar 

  • Dietrich S, Gruss P (1995) Undulated phenotypes suggest a role of Pax-1 for the development of vertebral and extravertebral structures. Dev Biol 167:529–548

    Article  CAS  PubMed  Google Scholar 

  • Dietrich S, Kessel M (1997) The vertebral column. In: Thorogood P (ed) Embryos, genes and birth defects. Wiley, Chichester, pp 281–302

    Google Scholar 

  • Dietrich S, Schubert FR, Gruss P (1993) Altered Pax gene expression in notochord mutants of the mouse: the notochord is required for the dorsoventral patterning of the somite. Mech Dev 44:189–207

    Article  CAS  PubMed  Google Scholar 

  • Dubrulle J, McGrew MJ, Pourquié O (2001) FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell 106:219–232

    Article  CAS  PubMed  Google Scholar 

  • Forsberg H, Crozet F, Brown NA (1998) Waves of mouse lunatic fringe expression, in four-hour cycles at two-hour intervals, precede somite boundary formation. Curr Biol 8:1027–1030

    Article  CAS  PubMed  Google Scholar 

  • Geipel P (1955) Zur Kenntnis der Spaltbildungen des Atlas und Epistropheus, Teil IV. Zbl Path 94:19

    CAS  Google Scholar 

  • George AW (1919) A method for more accurate study of injuries to the atlas and axis. N Engl J Med Surg 181:395–398

    Google Scholar 

  • Gholve PA, Hosalker HS, Ricchetti ET, Pollock AN, Dormans JP, Drummond DS (2007) Occipitalization of the atlas in children, morphologic classification, associations, and clinical relevance. J Bone Joint Surg Am 89:571–578

    PubMed  Google Scholar 

  • Giacomini C (1886) Sull’ esistenza dell’ “osodontoideum: nell” uomo. G Accad Med Torino 49:24–28

    Google Scholar 

  • Grabb PA, Mapstone TB, Oakes WJ (1999) Ventral brainstem compression in pediatric and young adult patients with Chiari I malformations. Neurosurgery 44:520–528

    Article  CAS  PubMed  Google Scholar 

  • Haack H, Kessel M (1994) Homeobox genes and skeletal patterning. In: Hall BK (ed) Bone, vol 9. CRC Press, Boca Raton, pp 119–144

    Google Scholar 

  • Hawkins RJ, Fielding JW, Thompson WJ (1976) Os odontoideum: congenital or acquired? J Bone Joint Surg Am 38:413–414

    Article  Google Scholar 

  • Hensinger RN (1986) Osseous anomalies of the craniovertebral junction. Spine 11:323–333

    Article  CAS  PubMed  Google Scholar 

  • Hensinger RN, Fielding JW, Hawkins RJ (1978) Congenital anomalies of the odontoid process. Orthop Clin N Am 9:901–912

    CAS  Google Scholar 

  • Huang R, Zhi Q, Ordahl CP, Christ B (1997) The fate of the first avian somite. Anat Embryol (Berl) 195:435–449

    Article  CAS  Google Scholar 

  • Jacob M, Christ B, Jacob HJ (1975) Über die regionale Determination des paraxialen Mesoderms junger Hühnerembryonen. Verh Anat Ges (Ger) 69:263–269

    CAS  Google Scholar 

  • Jenkins JFA (1969) The evolution and development of the dens of the mammalian axis. Anat Rec 164:173–184

    Article  PubMed  Google Scholar 

  • Jones FS, Georges C, Guss P, Edelman GM (1991a) Activation of the cytotactin promoter by the homeobox-containing gene Evx-1. Proc Natl Acad Sci U S A 89:2091

    Article  Google Scholar 

  • Jones FS, Prediger EA, Dennis BA, DeRobertis EM, Edelman GM (1991b) Cell adhesion molecules as targets for Hox genes: neural cell adhesion molecule promoter activity is modulated by cotransfection with Hox 2.5 and 2.4. Proc Natl Acad Sci U S A 89:2091

    Article  Google Scholar 

  • Kessel M (1992) Respecification of vertebral identities by retinoic acid. Development 115:487–501

    CAS  PubMed  Google Scholar 

  • Kessel M, Gruss P (1991) Homeotic transformations of murine vertebrae and concomitant alteration of Hox codes induced by retinoic acid. Cell 67:1–20

    Article  Google Scholar 

  • Keynes RJ, Stern CD (1988) Mechanisms of vertebrate segmentation. Development 103:413–429

    CAS  PubMed  Google Scholar 

  • Kieny M, Mauger A, Sengel P (1972) Early regionalization of the somitic mesoderm as studied by the development of the axial skeleton of the chick embryo. Dev Biol 28:42–161

    Article  Google Scholar 

  • Kirlew KA, Hathout GM, Reiter SD, Gold RH (1993) Os odontoideum in identical twins: perspective on etiology. Skelet Radiol 22:525–527

    Article  CAS  Google Scholar 

  • Koseki H, Wallin J, Wilting J et al (1993) A role for Pax-1 as mediator of notochordal signals during the dorsoventral specification of vertebrae. Development 119:649–660

    CAS  PubMed  Google Scholar 

  • Kotil D, Kalayci M (2005) Ventral cervicomedullary junction compression secondary to condylus occipitalis (median occipital condyle), a rare entity. J Spinal Disord Tech 18(4):382–385

    Article  PubMed  Google Scholar 

  • Le Double AF (1903/1912) Traité des variations des os du crane de l’homme et de leur signification au point de vue de l’Anthropologie zoologique. Vigot Frères, Paris

    Google Scholar 

  • Logan WW, Stuard ID (1973) Absence of posterior arch of the atlas. Am J Roentgenol 118:431–434

    Article  CAS  Google Scholar 

  • Lufkin T, Mark M, Hart CP, Dollé P, LeMeur M, Chambon P (1992) Homeotic transformation of the occipital bones of the skull by ectopic expression of a homeobox gene. Nature 359:835–841

    Article  CAS  PubMed  Google Scholar 

  • Macalister A (1893) Notes on the development and variations of the atlas. J Anat Physiol 27:519–542

    CAS  PubMed  PubMed Central  Google Scholar 

  • Markuske H (1978) Untersuchungen zur Static und Dynamik der kindlichen Halswirbelsäule: Der Aussagewert seitlicher Röntgenaufnahmen. In: Die Wirbelsäule in Forschung und Praxis, vol 50. Hippokrates, Stuttgart

    Google Scholar 

  • McGrew MJ, Dale JK, Fraboulet S, Pourquié O (1998) The lunatic fringe gene is a target of the molecular clock linked to somite segmentation in avian embryos. Curr Biol 8:979–982

    Article  CAS  PubMed  Google Scholar 

  • McRae DL (1953) Bony abnormalities in the region of the foramen magnum; correlation of the anatomic and neurologic findings. Acta Radiol 40:335–354

    Article  CAS  PubMed  Google Scholar 

  • McRae DL (1960) The significance of abnormalities of the cervical spine. Am J Roentgenol 84:3–25

    Google Scholar 

  • McRae DL, Barnum AS (1953) Occipitalization of the atlas. Am J Roentgenol Radium Therapy, Nucl Med 70:23–46

    CAS  Google Scholar 

  • Menezes AH (1996) Congenital and acquired abnormalities of the craniovertebral junction. In: Youmans JR (ed) Neurological surgery, 4th edn. WB Saunders, Philadelphia, pp 1035–1089

    Google Scholar 

  • Menezes AH (1998) Embryology, development, and classification of disorders of the craniovertebral junction. In: Dickman CA, Sonntag VKH, Spetzler RF (eds) Surgery of the craniovertebral junction. Thieme, New York, pp 3–12

    Google Scholar 

  • Menezes AH, Fenoy KA (2009) Remnants of occipital vertebrae: proatlas segmentation abnormalities. Neurosurgery 64:945–953

    Article  PubMed  Google Scholar 

  • Menezes AH, Ryken TC (1992) Craniovertebral abnormalities in Down’s syndrome. Neurosurgery 18:24–33

    CAS  Google Scholar 

  • Morgan MK, Onofrio BM, Bender CE (1989) Familial os odontoideum. Case report. J Neurosurg 70:636–639

    Article  CAS  PubMed  Google Scholar 

  • Müller F, O’Rahilly R (1980) The human chondrocranium at the end of the embryonic period, proper, with particular reference to the nervous system. Am J Anat 159:33–58

    Article  PubMed  Google Scholar 

  • Müller F, O’Rahilly R (1994) Occipitocervical segmentation in staged human embryos. J Anat 185:251–258

    PubMed  PubMed Central  Google Scholar 

  • Müller F, O’Rahilly R (2003) Segmentation in staged human embryos: the occipitocervical region revisited. J Anat 203:251–258

    Article  Google Scholar 

  • Musil L, Goodenough D (1990) Gap junctional intercellular communication and the regulation of connexin expression and function. Curr Opin Cell Biol 2:875

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa M, Sakamoto H, Hakuba A, Nakanishi N, Inoue Y (1997) Pathogenesis of Chiari malformation: a morphometric study of the posterior cranial fossa. J Neurosurg 86:40–47

    Article  CAS  PubMed  Google Scholar 

  • Palmeirim I, Henrique D, Ish-Horowicz D, Pourquié O (1997) Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell 91:639–648

    Article  CAS  PubMed  Google Scholar 

  • Pendergrass EP, Schaeffer JP, Hodes PJ (1956) The head and neck in Roentgen diagnosis, 2nd edn. Charles C. Thomas, Springfield, pp 1529–1530

    Google Scholar 

  • Pollack I, Pang D, Albright LA, Krieger D (1992a) Outcome following hind brain decompression of symptomatic Chiari malformations in children previously shunted with myelomeningoceles. J Neurosurg 77:881–888

    Article  CAS  PubMed  Google Scholar 

  • Pollack I, Pang D, Kocoshis S, Putnam P (1992b) Neurogenic dysphagia resulting from Chiari malformations. Neurosurgery 30:709–719

    CAS  PubMed  Google Scholar 

  • Pourquié O (2003a) Vertebrate somitogenesis: a novel paradigm for animal segmentation? Int J Dev Biol 47:597–603

    PubMed  Google Scholar 

  • Pourquié O (2003b) The segmentation clock: converting embryonic time into spatial pattern. Science 301:328–330

    Article  PubMed  Google Scholar 

  • Prescher A (1990) The differential diagnosis of isolated ossicles in the region of the dens axis. Gegenbaurs Morphol Jahrb 136:139–154

    CAS  PubMed  Google Scholar 

  • Prescher A (1997) The craniocervical junction in man, the osseous variations, their significance and differential diagnosis. Ann Anat 179:1–19

    Article  CAS  PubMed  Google Scholar 

  • Prescher A, Brors D, Adam G (1996) Anatomic and radiologic appearance of several variants of the craniocervical junction. Skull Base Surg 6:83–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao P (2002) Median (third) occipital condyle. Clin Anat 15:148–151

    Article  PubMed  Google Scholar 

  • Reiter A (1944) Die Frühentwicklung der menschlichen Wirbelsäule. II. Mitteilung: Die Entwicklung der Occipitalsegmente und der Halswirbelsäule. Z Anat Entwicklungsgesch 113:66–104

    Article  Google Scholar 

  • Remak R (1855) Untersuchungen über die Entwicklung der Wirbeltiere. G. Reimer, Berlin

    Google Scholar 

  • Sawada A, Shinya M, Jiang YJ, Kawakami A, Kuroiwa A, Takeda H (2001) Fgf/MAPK signaling is a crucial positional cue in somite boundary formation. Development 128:4873–4880

    CAS  PubMed  Google Scholar 

  • Schulze P, Buurman R (1980) Absence of the posterior arch of the atlas. Am J Roentgenol 134:178–180

    Article  CAS  Google Scholar 

  • Sensenig EC (1957) The development of the occipital and cervical segments and their associated structures in human embryos. Contrib Embryol 36:152–161

    Google Scholar 

  • Smith CA, Tuan RS (1994) Human PAX gene expression and development of the vertebral column. Clin Orthop Relat Res 302:241–250

    Google Scholar 

  • Stapleton P, Weith A, Urbanek P, Kozmik Z, Busslinger M (1993) Chromosomal localization of seven PAX genes and cloning of a novel family member, PAX-9. Nat Genet 3:292

    Article  CAS  PubMed  Google Scholar 

  • Starck D (1979) Das Skelettsystem. In: Starck D (ed) Vergleichende Anatomie der Wirbeltiere, vol 2. Springer, Berlin/Heidelberg/New York, pp 44–95

    Google Scholar 

  • Stern CD, Keynes RJ (1987) Interactions between somite cells; the formation and maintenance of segment boundaries in the chick embryo. Development 99:261–272

    CAS  PubMed  Google Scholar 

  • Stover LJ, Bergan U, Nilsen G, Sjaastad O (1993) Posterior cranial fossa dimensions in the Chiari I malformation: relation to pathogenesis and clinical presentation. Neuroradiology 35:113–118

    Article  Google Scholar 

  • Tramontano-Guerritore G (1927) Die atlanto-occipital union. Anat Anz 64:173–184

    Google Scholar 

  • Tubbs RS, Iskandar BJ, Bartolucci AA, Oakes WJ (2004) A critical analysis of the Chiari 1.5 malformation. J Neurosurg 101:179–183

    Article  PubMed  Google Scholar 

  • Vega A, Quintana F, Berciano J (1990) Basichondrocranium anomalies in adult Chiari type I malformation: a morphometric study. J Neurol Sci 99:137–145

    Article  CAS  PubMed  Google Scholar 

  • von Ebner E (1888) Urwirbel und Neugliederung der Wirbelsäule. Sitzungsber Akad Wiss Wein III 97:194–206

    Google Scholar 

  • von Ludinghausen M, Schindler G, Kageyama I, Pomaroli A (2002) The third occipital condyle, a constituent part of a median occipito-atlanto-odontoid joint: a case report. Surg Radiol Anat 24:71–76

    Article  Google Scholar 

  • von Torklus D, Gehle W (1969) Neue Perspektiven der Entwicklungsstörungen der oberen Halswirlbelsäule. Z Orthop 105:178

    Google Scholar 

  • von Torklus D, Gehle W (1972) Anomalies and malformations. In: von Torklus D, Gehle W (eds) The upper cervical spine. Thieme, Stuttgart, pp 14–53

    Google Scholar 

  • von Torklus D, Gehle W (1975) Die Obere Halswirbelsäule, 2nd edn. Thieme, Stuttgart

    Google Scholar 

  • Wadia NH (1967) Myelopathy complicating congenital atlantoaxial dislocation (a study of 28 cases). Brain 90:449–472

    Article  CAS  PubMed  Google Scholar 

  • Wallin J, Mizutani Y, Imai K et al (1993) A new Pax gene, Pax-9, maps to mouse chromosome 12. Mamm Genome 4:354–358

    Article  CAS  PubMed  Google Scholar 

  • Wallin J, Wilting J, Koseki H, Fritsch R, Christ B, Balling R (1994) The role of Pax-1 in axial skeleton development. Development 120:1109–1121

    CAS  PubMed  Google Scholar 

  • Wilting J, Ebensperger C, Müller TS, Koseki H, Wallin J, Christ B (1995) Pax-1 in the development of the cervico-occipital transitional zone. Anat Embryol 192:221–227

    Article  CAS  PubMed  Google Scholar 

  • Wollin DG (1963) The os odontoideum: separate odontoid process. J Bone Joint Surg Am 45:1459–1484

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dachling Pang .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Pang, D. (2017). Embryology, Classification, and Surgical Management of Bony Malformations of the Craniovertebral Junction. In: Di Rocco, C., Pang, D., Rutka, J. (eds) Textbook of Pediatric Neurosurgery. Springer, Cham. https://doi.org/10.1007/978-3-319-31512-6_123-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31512-6_123-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31512-6

  • Online ISBN: 978-3-319-31512-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics