Skip to main content

Combination of Antiangiogenics and Other Targeted Therapies

  • Living reference work entry
  • First Online:

Abstract

Angiogenesis is a hallmark of tumor development and metastasis and is now a validated target for cancer treatment. However, the overall benefits of antiangiogenic drugs from the perspective of impacting survival have left much to desire, endorsing a need for developing more effective therapeutic regimens, e.g., combining antiangiogenic drugs with established chemotherapeutic drugs. In this review, we discuss progress in the synergistic design of antiangiogenic agents in combination with targeted therapies. Targeted cancer therapies include monoclonal antibodies and small-molecule inhibitors that have significantly changed the treatment of cancer over the past years. We focus on antiangiogenic agents combined with targeted therapies inhibiting the epidermal growth factor receptor (EGFR) pathway and the PI3K (phosphoinositide 3-kinase)/AKT (protein kinase B)/mTOR (mammalian target of rapamycin) pathway and inhibiting immune checkpoint receptors, such as CTLA-4 (cytotoxic T lymphocyte-associated antigen 4) and PD1/PDL1 (programmed cell death protein 1/PD1 ligand). Of note, not always, encouraging preclinical data particularly of VEGF and EGFR inhibitor combinations did translate into the clinics. In addition, we highlight the rapidly developing field of VEGF-based humanized tri-specific nanobodies and novel VEGFR2-targeted antibody-based fusion proteins, potentially providing a new inspiration for antitumor treatment.

This is a preview of subscription content, log in via an institution.

References

  • Andersen JB, Spee B, Blechacz BR et al (2012) Genomic and genetic characterization of cholangiocarcinoma identifies therapeutic targets for tyrosine kinase inhibitors. Gastroenterology 142(4):1021–1031. e1015

    Article  CAS  PubMed  Google Scholar 

  • Baselga J, Tripathy D, Mendelsohn J et al (1996) Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J Clin Oncol Off J Am Soc Clin Oncol 14(3):737–744

    Article  CAS  Google Scholar 

  • Bendell JC, Powderly JD, Hanyoung Lieu C, Gail Eckhardt S, Hurwitz H, Hochster HS, Murphy JE, Funke RO, Rossi C, Wallin J, Waterkamp D, Pishvaian MJ (2015) Safety and efficacy of MPDL3280A (anti-PDL1) in combination with bevacizumab (bev) and/or FOLFOX in patients (pts) with metastatic colorectal cancer (mCRC). J Clin Oncol 33:2015. (suppl 3; abstr 704)

    Google Scholar 

  • Bukowski RM, Kabbinavar FF, Figlin RA et al (2007) Randomized phase II study of erlotinib combined with bevacizumab compared with bevacizumab alone in metastatic renal cell cancer. J Clin Oncol Off J Am Soc Clin Oncol 25(29):4536–4541

    Article  CAS  Google Scholar 

  • Ciardiello F, Bianco R, Damiano V et al (2000) Antiangiogenic and antitumor activity of anti-epidermal growth factor receptor C225 monoclonal antibody in combination with vascular endothelial growth factor antisense oligonucleotide in human GEO colon cancer cells. Clin Cancer Res 6(9):3739–3747

    CAS  PubMed  Google Scholar 

  • Ciardiello F, Bianco R, Caputo R et al (2004) Antitumor activity of ZD6474, a vascular endothelial growth factor receptor tyrosine kinase inhibitor, in human cancer cells with acquired resistance to antiepidermal growth factor receptor therapy. Clin Cancer Res 10(2):784–793

    Article  CAS  PubMed  Google Scholar 

  • Ciuleanu T, Tsai CM, Tsao CJ et al (2013) A phase II study of erlotinib in combination with bevacizumab versus chemotherapy plus bevacizumab in the first-line treatment of advanced non-squamous non-small cell lung cancer. Lung Cancer 82(2):276–281

    Article  CAS  PubMed  Google Scholar 

  • Dickler MN, Rugo HS, Eberle CA et al (2008) A phase II trial of erlotinib in combination with bevacizumab in patients with metastatic breast cancer. Clin Cancer Res 14(23):7878–7883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dormond O, Madsen JC, Briscoe DM (2007) The effects of mTOR-Akt interactions on anti-apoptotic signaling in vascular endothelial cells. J Biol Chem 282(32):23679–23686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dotan E, Meropol NJ, Burtness B et al (2012) A phase II study of capecitabine, oxaliplatin, and cetuximab with or without bevacizumab as frontline therapy for metastatic colorectal cancer. A fox chase extramural research study. J Gastrointest Cancer 43(4):562–569

    Article  PubMed  PubMed Central  Google Scholar 

  • Douillard JY, Oliner KS, Siena S et al (2013) Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med 369(11):1023–1034

    Article  CAS  PubMed  Google Scholar 

  • Drooger JC, van Tinteren H, de Groot SM et al (2016) A randomized phase 2 study exploring the role of bevacizumab and a chemotherapy-free approach in HER2-positive metastatic breast cancer: the HAT study (BOOG 2008-2003), a Dutch breast cancer research group trial. Cancer 122(19):2961–2970

    Article  CAS  PubMed  Google Scholar 

  • Falchook GS, Naing A, Hong DS et al (2013) Dual EGFR inhibition in combination with anti-VEGF treatment: a phase I clinical trial in non-small cell lung cancer. Oncotarget 4(1):118–127

    PubMed  PubMed Central  Google Scholar 

  • Falchook GS, Moulder S, Naing A et al (2015) A phase I trial of combination trastuzumab, lapatinib, and bevacizumab in patients with advanced cancer. Investig New Drugs 33(1):177–186

    Article  CAS  Google Scholar 

  • Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186

    Article  CAS  PubMed  Google Scholar 

  • Folkman J (1995) Seminars in Medicine of the Beth Israel Hospital, Boston. Clinical applications of research on angiogenesis. N Engl J Med 333(26):1757–1763

    Article  CAS  PubMed  Google Scholar 

  • Gabrilovich DI, Ishida T, Nadaf S et al (1999) Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clin Cancer Res 5(10):2963–2970

    CAS  PubMed  Google Scholar 

  • Hecht JR, Mitchell E, Chidiac T et al (2009) A randomized phase IIIB trial of chemotherapy, bevacizumab, and panitumumab compared with chemotherapy and bevacizumab alone for metastatic colorectal cancer. J Clin Oncol Off J Am Soc Clin Oncol 27(5):672–680

    Article  CAS  Google Scholar 

  • Herbst RS, Johnson DH, Mininberg E et al (2005) Phase I/II trial evaluating the anti-vascular endothelial growth factor monoclonal antibody bevacizumab in combination with the HER-1/epidermal growth factor receptor tyrosine kinase inhibitor erlotinib for patients with recurrent non-small-cell lung cancer. J Clin Oncol Off J Am Soc Clin Oncol 23(11):2544–2555

    Article  CAS  Google Scholar 

  • Heskamp S, Boerman OC, Molkenboer-Kuenen JD et al (2013) Bevacizumab reduces tumor targeting of antiepidermal growth factor and anti-insulin-like growth factor 1 receptor antibodies. Int J Cancer 133(2):307–314

    Article  CAS  PubMed  Google Scholar 

  • Heskamp S, Boerman OC, Molkenboer-Kuenen JD et al (2014) Cetuximab reduces the accumulation of radiolabeled bevacizumab in cancer xenografts without decreasing VEGF expression. Mol Pharm 11(11):4249–4257

    Article  CAS  PubMed  Google Scholar 

  • Hodi FS, Lawrence D, Lezcano C et al (2014) Bevacizumab plus ipilimumab in patients with metastatic melanoma. Cancer Immunol Res 2(7):632–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Yuan J, Righi E et al (2012) Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc Natl Acad Sci USA 109(43):17561–17566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karapetis CS, Khambata-Ford S, Jonker DJ et al (2008) K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 359(17):1757–1765

    Article  CAS  PubMed  Google Scholar 

  • Kasahara K, Arao T, Sakai K et al (2010) Impact of serum hepatocyte growth factor on treatment response to epidermal growth factor receptor tyrosine kinase inhibitors in patients with non-small cell lung adenocarcinoma. Clin Cancer Res 16(18):4616–4624

    Article  CAS  PubMed  Google Scholar 

  • Kerbel RS, Viloria-Petit A, Okada F et al (1998) Establishing a link between oncogenes and tumor angiogenesis. Mol Med 4(5):286–295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Konecny GE, Meng YG, Untch M et al (2004) Association between HER-2/neu and vascular endothelial growth factor expression predicts clinical outcome in primary breast cancer patients. Clin Cancer Res 10(5):1706–1716

    Article  CAS  PubMed  Google Scholar 

  • Larsen AK, Ouaret D, El Ouadrani K et al (2011a) Targeting EGFR and VEGF(R) pathway cross-talk in tumor survival and angiogenesis. Pharmacol Ther 131(1):80–90

    Article  CAS  PubMed  Google Scholar 

  • Larsen FO, Pfeiffer P, Nielsen D et al (2011b) Bevacizumab in combination with cetuximab and irinotecan after failure of cetuximab and irinotecan in patients with metastatic colorectal cancer. Acta Oncol 50(4):574–577

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Luan L, Wang X (2015) A randomized phase II clinical study of combining panitumumab and bevacizumab, plus irinotecan, 5-fluorouracil, and leucovorin (FOLFIRI) compared with FOLFIRI alone as second-line treatment for patients with metastatic colorectal cancer and KRAS mutation. Onco Targets and therapy 8:1061–1068

    CAS  Google Scholar 

  • Liu X, Kambrick S, Fu S et al (2016) Advanced malignancies treated with a combination of the VEGF inhibitor bevacizumab, anti-EGFR antibody cetuximab, and the mTOR inhibitor temsirolimus. Oncotarget 7(17):23227–23238

    PubMed  PubMed Central  Google Scholar 

  • Lubner SJ, Mahoney MR, Kolesar JL et al (2010) Report of a multicenter phase II trial testing a combination of biweekly bevacizumab and daily erlotinib in patients with unresectable biliary cancer: a phase II consortium study. J Clin Oncol Off J Am Soc Clin Oncol 28(21):3491–3497

    Article  CAS  Google Scholar 

  • Lv Y, Yang Z, Zhao L et al (2015) The efficacy and safety of adding bevacizumab to cetuximab- or panitumumab-based therapy in the treatment of patients with metastatic colorectal cancer (mCRC): a meta-analysis from randomized control trials. Int J Clin Exp Med 8(1):334–345

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahoney KM, Jacobus S, Bhatt RS et al (2016) Phase 2 study of Bevacizumab and Temsirolimus after VEGFR TKI in metastatic renal cell carcinoma. Clin Genitourin Cancer 14(4):304–313

    Article  PubMed  Google Scholar 

  • Maity A, Pore N, Lee J et al (2000) Epidermal growth factor receptor transcriptionally up-regulates vascular endothelial growth factor expression in human glioblastoma cells via a pathway involving phosphatidylinositol 3′-kinase and distinct from that induced by hypoxia. Cancer Res 60(20):5879–5886

    CAS  PubMed  Google Scholar 

  • du Manoir JM, Francia G, Man S et al (2006) Strategies for delaying or treating in vivo acquired resistance to trastuzumab in human breast cancer xenografts. Clin Cancer Res 12(3 Pt 1):904–916

    Article  PubMed  Google Scholar 

  • Martinelli E, Troiani T, Morgillo F et al (2010) Synergistic antitumor activity of sorafenib in combination with epidermal growth factor receptor inhibitors in colorectal and lung cancer cells. Clin Cancer Res 16(20):4990–5001

    Article  CAS  PubMed  Google Scholar 

  • McDermott DF, Sosman JA, Sznol M et al (2016) Atezolizumab, an anti-programmed death-ligand 1 antibody, in metastatic renal cell carcinoma: long-term safety, clinical activity, and immune correlates from a phase Ia study. J Clin Oncol Off J Am Soc Clin Oncol 34(8):833–842

    Article  CAS  Google Scholar 

  • Monk BJ, Poveda A, Vergote I et al (2014) Anti-angiopoietin therapy with trebananib for recurrent ovarian cancer (TRINOVA-1): a randomised, multicentre, double-blind, placebo-controlled phase 3 trial. Lancet Oncol 15(8):799–808

    Article  CAS  PubMed  Google Scholar 

  • Motzer RJ, Escudier B, McDermott DF et al (2015) Nivolumab versus Everolimus in advanced renal-cell carcinoma. N Engl J Med 373(19):1803–1813

    Article  CAS  PubMed  Google Scholar 

  • Ocean AJ, Polite B, Christos P et al (2010) Cetuximab is associated with excessive toxicity when combined with bevacizumab plus mFOLFOX6 in metastatic colorectal carcinoma. Clin Colorectal Cancer 9(5):290–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osada T, Chong G, Tansik R et al (2008) The effect of anti-VEGF therapy on immature myeloid cell and dendritic cells in cancer patients. Cancer Immunol Immunother 57(8):1115–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oyama T, Ran S, Ishida T et al (1998) Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells. J Immunol 160(3):1224–1232

    CAS  PubMed  Google Scholar 

  • Park BK, Paik YH, Park JY et al (2006) The clinicopathologic significance of the expression of vascular endothelial growth factor-C in intrahepatic cholangiocarcinoma. Am J Clin Oncol 29(2):138–142

    Article  CAS  PubMed  Google Scholar 

  • Piha-Paul SA, Wheler JJ, Fu S et al (2014) Advanced gynecologic malignancies treated with a combination of the VEGF inhibitor bevacizumab and the mTOR inhibitor temsirolimus. Oncotarget 5(7):1846–1855

    Article  PubMed  PubMed Central  Google Scholar 

  • Poindessous V, Ouaret D, El Ouadrani K et al (2011) EGFR- and VEGF(R)-targeted small molecules show synergistic activity in colorectal cancer models refractory to combinations of monoclonal antibodies. Clin Cancer Res 17(20):6522–6530

    Article  CAS  PubMed  Google Scholar 

  • Prewett M, Rothman M, Waksal H et al (1998) Mouse-human chimeric anti-epidermal growth factor receptor antibody C225 inhibits the growth of human renal cell carcinoma xenografts in nude mice. Clin Cancer Res 4(12):2957–2966

    CAS  PubMed  Google Scholar 

  • Rak J, Mitsuhashi Y, Sheehan C et al (2000) Oncogenes and tumor angiogenesis: differential modes of vascular endothelial growth factor up-regulation in ras-transformed epithelial cells and fibroblasts. Cancer Res 60(2):490–498

    CAS  PubMed  Google Scholar 

  • Riggs H, Jalal SI, Baghdadi TA et al (2013) Erlotinib and bevacizumab in newly diagnosed performance status 2 or elderly patients with nonsquamous non-small-cell lung cancer, a phase II study of the Hoosier oncology group: LUN04-77. Clin Lung Cancer 14(3):224–229

    Article  CAS  PubMed  Google Scholar 

  • Riley E, Carloss H (2011) Dramatic response to panitumumab and bevacizumab in metastatic gallbladder carcinoma. Oncologist 16(5):e1–e2

    Article  PubMed  PubMed Central  Google Scholar 

  • Rini BI, Stein M, Shannon P et al (2011) Phase 1 dose-escalation trial of tremelimumab plus sunitinib in patients with metastatic renal cell carcinoma. Cancer 117(4):758–767

    Article  CAS  PubMed  Google Scholar 

  • Rugo HS, Chien AJ, Franco SX et al (2012) A phase II study of lapatinib and bevacizumab as treatment for HER2-overexpressing metastatic breast cancer. Breast Cancer Res Treat 134(1):13–20

    Article  CAS  PubMed  Google Scholar 

  • Saltz L, Badarinath S, Dakhil S et al (2012) Phase III trial of cetuximab, bevacizumab, and 5-fluorouracil/leucovorin vs. FOLFOX-bevacizumab in colorectal cancer. Clin Colorectal Cancer 11(2):101–111

    Article  CAS  PubMed  Google Scholar 

  • Sato K, Kimoto M, Kakumoto M et al (2000) Adaptor protein Shc undergoes translocation and mediates up-regulation of the tyrosine kinase c-Src in EGF-stimulated A431 cells. Genes Cells 5(9):749–764

    Article  CAS  PubMed  Google Scholar 

  • Scartozzi M, Galizia E, Chiorrini S et al (2009) Arterial hypertension correlates with clinical outcome in colorectal cancer patients treated with first-line bevacizumab. Ann Oncol 20(2):227–230

    Article  CAS  PubMed  Google Scholar 

  • Seto T, Kato T, Nishio M et al (2014) Erlotinib alone or with bevacizumab as first-line therapy in patients with advanced non-squamous non-small-cell lung cancer harbouring EGFR mutations (JO25567): an open-label, randomised, multicentre, phase 2 study. Lancet Oncol 15(11):1236–1244

    Article  CAS  PubMed  Google Scholar 

  • Soto-Ortiz L (2016) A cancer treatment based on synergy between anti-angiogenic and immune cell therapies. J Theor Biol 394:197–211

    Article  CAS  PubMed  Google Scholar 

  • Sznol M, McDermott DF, Fields Jones S, Mier JW, Waterkamp D, Rossi C, Wallin J, Funke RP, Bendell JC (2015) Phase Ib evaluation of MPDL3280A (anti-PDL1) in combination with bevacizumab (bev) in patients (pts) with metastatic renal cell carcinoma (mRCC). J Clin Oncol 33:2015. (suppl 7; abstr 410)

    Article  Google Scholar 

  • Tabernero J (2007) The role of VEGF and EGFR inhibition: implications for combining anti-VEGF and anti-EGFR agents. Mol Cancer Res 5(3):203–220

    Article  CAS  PubMed  Google Scholar 

  • Tanaka S, Sakamori Y, Niimi M et al (2011) Design paper: a phase II study of bevacizumab and erlotinib in patients with non-squamous non-small cell lung cancer that is refractory or relapsed after 1-2 previous treatment (BEST). Trials 12:120

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas MB, Morris JS, Chadha R et al (2009) Phase II trial of the combination of bevacizumab and erlotinib in patients who have advanced hepatocellular carcinoma. J Clin Oncol Off J Am Soc Clin Oncol 27(6):843–850

    Article  CAS  Google Scholar 

  • Tol J, Koopman M, Cats A et al (2009) Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N Engl J Med 360(6):563–572

    Article  CAS  PubMed  Google Scholar 

  • Tortora G, Ciardiello F, Gasparini G (2008) Combined targeting of EGFR-dependent and VEGF-dependent pathways: rationale, preclinical studies and clinical applications. Nat Clin Pract Oncol 5(9):521–530

    Article  CAS  PubMed  Google Scholar 

  • Tripathy D, Slamon DJ, Cobleigh M et al (2004) Safety of treatment of metastatic breast cancer with trastuzumab beyond disease progression. J Clin Oncol Off J Am Soc Clin Oncol 22(6):1063–1070

    Article  CAS  Google Scholar 

  • Viloria-Petit A, Crombet T, Jothy S et al (2001) Acquired resistance to the antitumor effect of epidermal growth factor receptor-blocking antibodies in vivo: a role for altered tumor angiogenesis. Cancer Res 61(13):5090–5101

    CAS  PubMed  Google Scholar 

  • Vlahovic G, Meadows KL, Uronis HE et al (2012) A phase I study of bevacizumab, everolimus and panitumumab in advanced solid tumors. Cancer Chemother Pharmacol 70(1):95–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Dong L, Bi Q et al (2010) Investigation of the efficacy of a bevacizumab-cetuximab-cisplatin regimen in treating head and neck squamous cell carcinoma in mice. Target Oncol 5(4):237–243

    Article  PubMed  Google Scholar 

  • Wells SA Jr, Robinson BG, Gagel RF et al (2012) Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J Clin Oncol Off J Am Soc Clin Oncol 30(2):134–141

    Article  CAS  Google Scholar 

  • Wu JD, Higgins LM, Steinle A et al (2004) Prevalent expression of the immunostimulatory MHC class I chain-related molecule is counteracted by shedding in prostate cancer. J Clin Invest 114(4):560–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie W, Li D, Zhang J et al (2014a) Generation and characterization of a novel human IgG1 antibody against vascular endothelial growth factor receptor 2. Cancer Immunol Immunother 63(9):877–888

    Article  CAS  PubMed  Google Scholar 

  • Xie S, Han G, Fan Z et al (2014b) Safety and efficacy of second-line treatment with folinic acid, 5-fluorouracil and irinotecan (FOLFIRI) in combination of panitumumab and bevacizumab for patients with metastatic colorectal cancer. Med Oncol 31(7):35

    Article  PubMed  Google Scholar 

  • Yen L, You XL, Al Moustafa AE et al (2000) Heregulin selectively upregulates vascular endothelial growth factor secretion in cancer cells and stimulates angiogenesis. Oncogene 19(31):3460–3469

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa D, Ojima H, Iwasaki M et al (2008) Clinicopathological and prognostic significance of EGFR, VEGF, and HER2 expression in cholangiocarcinoma. Br J Cancer 98(2):418–425

    Article  CAS  PubMed  Google Scholar 

  • Zhong H, De Marzo AM, Laughner E et al (1999) Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res 59(22):5830–5835

    CAS  PubMed  Google Scholar 

  • Zhong H, Chiles K, Feldser D et al (2000) Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res 60(6):1541–1545

    CAS  PubMed  Google Scholar 

  • Zhu CQ, da Cunha Santos G, Ding K et al (2008) Role of KRAS and EGFR as biomarkers of response to erlotinib in National Cancer Institute of Canada Clinical Trials Group Study BR.21. J Clin Oncol Off J Am Soc Clin Oncol 26(26):4268–4275

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja Zirlik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Zirlik, K., Duyster, J. (2017). Combination of Antiangiogenics and Other Targeted Therapies. In: Marmé, D. (eds) Tumor Angiogenesis. Springer, Cham. https://doi.org/10.1007/978-3-319-31215-6_14-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31215-6_14-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31215-6

  • Online ISBN: 978-3-319-31215-6

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics