Skip to main content

Anti-angiogenics and Radiation Therapy

  • Living reference work entry
  • First Online:
Tumor Angiogenesis

Abstract

Investigation of the combined effects of radiation and anti-angiogenic therapy has yielded intriguing preclinical and clinical results. The cytotoxic effects of radiation on cancer cells are critically dependent on the formation of free radicals and therefore an adequate supply of oxygen by blood vessels. Most tumors, however, are characterized by irregular angiogenesis and marked hypoxia. Anti-angiogenic therapy could contribute to a normalization of blood vessels to improve blood flow, alleviate hypoxia, and subsequently increase the effectiveness of radiotherapy. Clinical evidence in glioblastoma and other tumor entities have shown encouraging outcomes and warrant further characterization of the synergism between these therapies. Care should be taken with respect to the toxicity profiles of both entities, especially where side effects overlap, for example, damage to organs such as the liver, kidney, or the lung, ischemic complications, organ perforation, and the impairment of bone marrow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbott D, Holt J, Freeman M (1998) Double-strand break repair deficiency and radiation sensitivity in BRCA2 mutant cancer cells. J Natl Cancer Inst 90:978–985

    Article  CAS  PubMed  Google Scholar 

  • Abbott D et al (1999) BRCA1 expression restores radiation resistance in BRCA1-defective cancer cells through enhancement of transcription-coupled DNA repair. J Biol Chem 274:18808–18812

    Article  CAS  PubMed  Google Scholar 

  • Ahn GO, Brown JM (2008) Matrix metalloproteinase-9 is required for tumor vasculogenesis but not for angiogenesis: role of bone marrow-derived myelomonocytic cells. Cancer Cell 13:193–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amberger-Murphy V (2009) Hypoxia helps glioma to fight therapy. Curr Cancer Drug Targets 9:381–390

    Article  CAS  PubMed  Google Scholar 

  • Batchelor T et al (2013) Improved tumor oxygenation and survival in glioblastoma patients who show increased blood perfusion after cediranib and chemoradiation. Proc Natl Acad Sci U S A 110:19059–19064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bendell JC et al (2012) A phase II trial of preoperative concurrent chemotherapy/radiation therapy plus bevacizumab/erlotinib in the treatment of localized esophageal cancer. Clin Adv Hematol Oncol 10:430–437

    PubMed  Google Scholar 

  • Brandes A et al (2010) EORTC study 26041-22041: phase I/II study on concomitant and adjuvant temozolomide (TMZ) and radiotherapy (RT) with PTK787/ZK222584 (PTK/ZK) in newly diagnosed glioblastoma. Eur J Cancer 46:348–354

    Article  CAS  PubMed  Google Scholar 

  • Buren G et al (2013) Phase II study of induction fixed-dose rate gemcitabine and bevacizumab followed by 30 Gy radiotherapy as preoperative treatment for potentially resectable pancreatic adenocarcinoma. Ann Surg Oncol 20:3787–3793

    Article  PubMed  Google Scholar 

  • Canter R et al (2014) Phase I trial of neoadjuvant conformal radiotherapy plus sorafenib for patients with locally advanced soft tissue sarcoma of the extremity. Ann Surg Oncol 21:1616–1623

    Article  PubMed  PubMed Central  Google Scholar 

  • Chauffert B et al (2014) Randomized phase II trial of irinotecan and bevacizumab as neo-adjuvant and adjuvant to temozolomide-based chemoradiation compared with temozolomide-chemoradiation for unresectable glioblastoma: final results of the TEMAVIR study from ANOCEF. Ann Oncol 25:1442–1447

    Article  CAS  PubMed  Google Scholar 

  • Chinot O et al (2014) Bevacizumab plus radiotherapy–temozolomide for newly diagnosed glioblastoma. N Engl J Med 370:709–722

    Article  CAS  PubMed  Google Scholar 

  • Clarke J et al (2014) A single-institution phase II trial of radiation, temozolomide, erlotinib, and bevacizumab for initial treatment of glioblastoma. Neuro-Oncology 16:984–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collis SJ, Swartz MJ, Nelson WG, DeWeese TL (2003) Enhanced radiation and chemotherapy-mediated cell killing of human cancer cells by small inhibitory RNA silencing of DNA repair factors. Cancer Res 63:1550–1554

    CAS  PubMed  Google Scholar 

  • Crane C et al (2006) Phase I trial evaluating the safety of bevacizumab with concurrent radiotherapy and capecitabine in locally advanced pancreatic cancer. J Clin Oncol 24:1145–1151

    Article  CAS  PubMed  Google Scholar 

  • Crane C et al (2009) Phase II study of bevacizumab with concurrent capecitabine and radiation followed by maintenance gemcitabine and bevacizumab for locally advanced pancreatic cancer: Radiation Therapy Oncology Group RTOG 0411. J Clin Oncol 27:4096–4102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crane C et al (2010) Phase II trial of neoadjuvant bevacizumab, capecitabine, and radiotherapy for locally advanced rectal cancer. Int J Radiat Oncol Biol Phys 76:824–830

    Article  CAS  PubMed  Google Scholar 

  • Dings R, Loren M, Heun H, McNiel E (2007) Scheduling of radiation with angiogenesis inhibitors anginex and Avastin improves therapeutic outcome via vessel normalization. Clin Cancer Res 13:3395–3402. doi:10.1158/1078-0432.CCR-06-2441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drappatz J et al (2010) Phase I study of vandetanib with radiotherapy and temozolomide for newly diagnosed glioblastoma. Int J Radiat Oncol Biol Phys 78:85–90

    Article  CAS  PubMed  Google Scholar 

  • Drew R, Fairchild R, Atkins H (1972) The oxygen enhancement ratio as measured with HeLa cells and protracted irradiation from 252Cf and 137Cs. Radiology 104:409–413

    Article  CAS  PubMed  Google Scholar 

  • Eriksson D, Stigbrand T (2010) Radiation-induced cell death mechanisms. Tumour Biol 31:363–372

    Article  PubMed  Google Scholar 

  • Fenton BM, Paoni SF, Ding I (2004) Pathophysiological effects of vascular endothelial growth factor receptor-2-blocking antibody plus fractionated radiotherapy on murine mammary tumors. Cancer Res 64:5712–5719

    Article  CAS  PubMed  Google Scholar 

  • Fury M et al (2012) A phase 2 study of bevacizumab with cisplatin plus intensity-modulated radiation therapy for stage III/IVB head and neck squamous cell cancer. Cancer 118:5008–5014

    Article  CAS  PubMed  Google Scholar 

  • Fyles A et al (1998) Oxygenation predicts radiation response and survival in patients with cervix cancer. Radiother Oncol 48:149–156

    Article  CAS  PubMed  Google Scholar 

  • Gasparini G et al (2012) A phase II study of neoadjuvant bevacizumab plus capecitabine and concomitant radiotherapy in patients with locally advanced rectal cancer. Angiogenesis 15:141–150

    Article  CAS  PubMed  Google Scholar 

  • Gatenby R et al (1988) Oxygen distribution in squamous cell carcinoma metastases and its relationship to outcome of radiation therapy. Int J Radiat Oncol Biol Phys 14:831–838

    Article  CAS  PubMed  Google Scholar 

  • Geng L et al (2001) Inhibition of vascular endothelial growth factor receptor signaling leads to reversal of tumor resistance to radiotherapy. Cancer Res 61:2413–2419

    CAS  PubMed  Google Scholar 

  • Gerstner E et al (2011) Phase I trial with biomarker studies of vatalanib (PTK787) in patients with newly diagnosed glioblastoma treated with enzyme inducing anti-epileptic drugs and standard radiation and temozolomide. J Neuro-Oncol 103:325–332

    Article  CAS  Google Scholar 

  • Gilbert M et al (2014) A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 370:699–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haas R et al (2015) A phase I study on the combination of neoadjuvant radiotherapy plus pazopanib in patients with locally advanced soft tissue sarcoma of the extremities. Acta Oncol 54:1195–1201

    Article  CAS  PubMed  Google Scholar 

  • Hainsworth JD et al (2012) Phase II study of concurrent radiation therapy, temozolomide, and bevacizumab followed by bevacizumab/everolimus as first-line treatment for patients with glioblastoma. Clin Adv Hematol Oncol 10:240–246

    PubMed  Google Scholar 

  • Hlushchuk R, Riesterer O, Baum O, Wood J (2008) Tumor recovery by angiogenic switch from sprouting to intussusceptive angiogenesis after treatment with PTK787/ZK222584 or ionizing radiation. Am J Pathol 173:1173–1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofland K et al (2014) Neoadjuvant bevacizumab and irinotecan versus bevacizumab and temozolomide followed by concomitant chemoradiotherapy in newly diagnosed glioblastoma multiforme: a randomized phase II study. Acta Oncol 53:939–944

    Article  CAS  PubMed  Google Scholar 

  • Iwamoto F et al (2010) Phase II trial of pazopanib (GW786034), an oral multi-targeted angiogenesis inhibitor, for adults with recurrent glioblastoma (North American Brain Tumor Consortium Study 06-02). Neuro-Oncology 12:855–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iyer NV et al (1998) Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1alpha. Genes Dev 12:149–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62

    Article  CAS  PubMed  Google Scholar 

  • Kennecke H et al (2012) Pre-operative bevacizumab, capecitabine, oxaliplatin and radiation among patients with locally advanced or low rectal cancer: a phase II trial. Eur J Cancer 48:37–45

    Article  CAS  PubMed  Google Scholar 

  • Koukourakis M et al (2009) Phase I/II trial of bevacizumab and radiotherapy for locally advanced inoperable colorectal cancer: vasculature-independent radiosensitizing effect of bevacizumab. Clin Cancer Res 15:7069–7076

    Article  CAS  PubMed  Google Scholar 

  • Kozin SV et al (2001) Vascular endothelial growth factor receptor-2-blocking antibody potentiates radiation-induced long-term control of human tumor xenografts. Cancer Res 61:39–44

    CAS  PubMed  Google Scholar 

  • Kreisl T et al (2012) A phase I/II trial of vandetanib for patients with recurrent malignant glioma. Neuro-Oncology 14:1519–1526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai A et al (2008) Phase II pilot study of bevacizumab in combination with temozolomide and regional radiation therapy for up-front treatment of patients with newly diagnosed glioblastoma multiforme: interim analysis of safety and tolerability. Int J Radiat Oncol Biol Phys 71:1372–1380

    Article  CAS  PubMed  Google Scholar 

  • Lai A et al (2011) Phase II study of bevacizumab plus temozolomide during and after radiation therapy for patients with newly diagnosed glioblastoma multiforme. J Clin Oncol 29:142–148

    Article  CAS  PubMed  Google Scholar 

  • Landuyt W et al (2001) In vivo antitumor effect of vascular targeting combined with either ionizing radiation or anti-angiogenesis treatment. Int J Radiat Oncol Biol Phys 49:443–450

    Article  CAS  PubMed  Google Scholar 

  • Lee CG et al (2000) Anti-vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res 60:5565–5570

    CAS  PubMed  Google Scholar 

  • Lee WH, Cho HJ, Sonntag WE, Lee YW (2011) Radiation attenuates physiological angiogenesis by differential expression of VEGF, Ang-1, tie-2 and Ang-2 in rat brain. Radiat Res 176:753–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee N et al (2012) Addition of bevacizumab to standard chemoradiation for locoregionally advanced nasopharyngeal carcinoma (RTOG 0615): a phase 2 multi-institutional trial. Lancet Oncol 13:172–180

    Article  CAS  PubMed  Google Scholar 

  • Lewin J et al (2014) A phase Ib/II translational study of sunitinib with neoadjuvant radiotherapy in soft-tissue sarcoma. Br J Cancer 111:2254–2261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Huang S, Armstrong E, Fowler J, Harari P (2005) Angiogenesis and radiation response modulation after vascular endothelial growth factor receptor-2 (VEGFR2) blockade. Int J Radiat Oncol Biol Phys 62:1477–1485

    Article  CAS  PubMed  Google Scholar 

  • Ling C, Spiro I, Mitchell J, Stickler R (1985) The variation of OER with dose rate. Int J Radiat Oncol Biol Phys 11:1367–1373

    Article  CAS  PubMed  Google Scholar 

  • Lordick F, Geinitz H, Theisen J, Sendler A, Sarbia M (2006) Increased risk of ischemic bowel complications during treatment with bevacizumab after pelvic irradiation: report of three cases. Int J Radiat Oncol Biol Phys 64:1295–1298

    Article  CAS  PubMed  Google Scholar 

  • Lu-Emerson C et al (2015) Lessons from anti-vascular endothelial growth factor and anti-vascular endothelial growth factor receptor trials in patients with glioblastoma. J Clin Oncol 33:1197–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lund EL, Bastholm L, Kristjansen PE (2000) Therapeutic synergy of TNP-470 and ionizing radiation: effects on tumor growth, vessel morphology, and angiogenesis in human glioblastoma multiforme xenografts. Clin Cancer Res 6:971–978

    CAS  PubMed  Google Scholar 

  • Matsumoto S, Batra S, Saito K, Yasui H, Choudhuri R (2011) Antiangiogenic agent sunitinib transiently increases tumor oxygenation and suppresses cycling hypoxia. Cancer Res 71:6350–6359. doi:10.1158/0008-5472.CAN-11-2025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng Y et al (2010) Blockade of tumor necrosis factor signaling in tumor-associated macrophages as a radiosensitizing strategy. Cancer Res 70:1534–1543

    Article  CAS  PubMed  Google Scholar 

  • Michaels H, Hunt J (1978) A model for radiation damage in cells by direct effect and by indirect effect: a radiation chemistry approach. Radiat Res 74:23

    Article  CAS  Google Scholar 

  • Moeller BJ, Cao Y, Li CY, Dewhirst MW (2004) Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 5:429–441

    Article  CAS  PubMed  Google Scholar 

  • Narayana A et al (2012) A clinical trial of bevacizumab, temozolomide, and radiation for newly diagnosed glioblastoma. J Neurosurg 116:341–345

    Article  CAS  PubMed  Google Scholar 

  • Ney D et al (2015) Phase II trial of hypofractionated intensity-modulated radiation therapy combined with temozolomide and bevacizumab for patients with newly diagnosed glioblastoma. J Neuro-Oncol 122:135–143

    Article  CAS  Google Scholar 

  • Neyns B et al (2011) Phase II study of sunitinib malate in patients with recurrent high-grade glioma. J Neuro-Oncol 103:491–501

    Article  CAS  Google Scholar 

  • Nordsmark M et al (2001) Hypoxia in human soft tissue sarcomas: adverse impact on survival and no association with p53 mutations. Br J Cancer 84:1070–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nordsmark M et al (2005) Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. Radiother Oncol 77:18–24

    Article  PubMed  Google Scholar 

  • Omuro A et al (2014) Phase II study of bevacizumab, temozolomide, and hypofractionated stereotactic radiotherapy for newly diagnosed glioblastoma. Clin Cancer Res 20:5023–5031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palcic B, Brosing JW, Skarsgard LD (1982) Survival measurements at low doses: oxygen enhancement ratio. Br J Cancer 46:980–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan E et al (2012) A prospective phase II single-institution trial of sunitinib for recurrent malignant glioma. J Neuro-Oncol 110:111–118

    Article  CAS  Google Scholar 

  • Parshad R, Sanford KK, Jones GM (1983) Chromatid damage after G2 phase X-irradiation of cells from cancer-prone individuals implicates deficiency in DNA repair. Proc Natl Acad Sci U S A 80:5612–5616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters K et al (2015) Phase II trial of upfront bevacizumab, irinotecan, and temozolomide for unresectable glioblastoma. Oncologist 20:727–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Resch G et al (2012) Preoperative treatment with capecitabine, bevacizumab and radiotherapy for primary locally advanced rectal cancer – a two stage phase II clinical trial. Radiother Oncol 102:10–13

    Article  CAS  PubMed  Google Scholar 

  • Sabin R, Anderson R (2011) Cellular senescence – its role in cancer and the response to ionizing radiation. Genome Integr 2:1–9

    Article  Google Scholar 

  • Salama JK et al (2011) A randomized phase II study of 5-fluorouracil, hydroxyurea, and twice-daily radiotherapy compared with bevacizumab plus 5-fluorouracil, hydroxyurea, and twice-daily radiotherapy for intermediate-stage and T4N0-1 head and neck cancers. Ann Oncol 22:2304–2309

    Article  CAS  PubMed  Google Scholar 

  • Schefter T et al (2012) A phase II study of bevacizumab in combination with definitive radiotherapy and cisplatin chemotherapy in untreated patients with locally advanced cervical carcinoma: preliminary results of RTOG 0417. Int J Radiat Oncol Biol Phys 83:1179–1184

    Article  CAS  PubMed  Google Scholar 

  • Seiwert TY, Haraf DJ, Cohen EE (2008) Phase I study of bevacizumab added to fluorouracil- and hydroxyurea-based concomitant chemoradiotherapy for poor-prognosis head and neck cancer. J Clin Oncol 26:1732–1741. doi:10.1200/JCO.2007.13.1706

    Article  CAS  PubMed  Google Scholar 

  • Semenza G (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3:721–732

    Article  CAS  PubMed  Google Scholar 

  • Small W et al (2011) Phase II trial of full-dose gemcitabine and bevacizumab in combination with attenuated three-dimensional conformal radiotherapy in patients with localized pancreatic cancer. Int J Radiat Oncol Biol Phys 80:476–482

    Article  CAS  PubMed  Google Scholar 

  • Spigel DR et al (2009) Tracheoesophageal fistula formation in patients with lung cancer treated with chemoradiation and bevacizumab. J Clin Oncol 28:43–48

    Article  PubMed  Google Scholar 

  • Spitz FR et al (1996) Adenoviral-mediated wild-type p53 gene expression sensitizes colorectal cancer cells to ionizing radiation. Clin Cancer Res 2:1665–1671

    CAS  PubMed  Google Scholar 

  • Stenerlöw B, Karlsson KH, Cooper B, Rydberg B (2003) Measurement of prompt DNA double-strand breaks in mammalian cells without including heat-labile sites: results for cells deficient in nonhomologous end joining. Radiat Res 159:502–510

    Article  PubMed  Google Scholar 

  • Stupp R et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  CAS  PubMed  Google Scholar 

  • Trédan O, Galmarini C, Patel K, Tannock I (2007) Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst 99:1441–1454

    Article  PubMed  Google Scholar 

  • Vakifahmetoglu H, Olsson M, Zhivotovsky B (2008) Death through a tragedy: mitotic catastrophe. Cell Death Differ 15:1153–1162

    Article  CAS  PubMed  Google Scholar 

  • Vala I et al (2010) Low doses of ionizing radiation promote tumor growth and metastasis by enhancing angiogenesis. PLoS One 5:e11222

    Article  Google Scholar 

  • Van Linde M et al (2015) Bevacizumab in combination with radiotherapy and temozolomide for patients with newly diagnosed glioblastoma multiforme. Oncologist 20:107–108

    Article  PubMed  PubMed Central  Google Scholar 

  • Velenik V et al (2011) Neoadjuvant capecitabine, radiotherapy, and bevacizumab (CRAB) in locally advanced rectal cancer: results of an open-label phase II study. Radiat Oncol 6:1–8

    Article  Google Scholar 

  • Vincenti S, Brillante N, Lanza V, Bozzoni I (2011) HUVEC respond to radiation by inducing the expression of pro-angiogenic microRNAs. Radiat Ther 175:535–546

    Article  CAS  Google Scholar 

  • Vredenburgh J et al (2011) The addition of bevacizumab to standard radiation therapy and temozolomide followed by bevacizumab, temozolomide, and irinotecan for newly diagnosed glioblastoma. Clin Cancer Res 17:4119–4124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watters D (1999) Molecular mechanisms of ionizing radiation-induced apoptosis. Immunol Cell Biol 77:263–271

    Article  CAS  PubMed  Google Scholar 

  • Winkler F et al (2004) Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6:553–563

    CAS  PubMed  Google Scholar 

  • Yoon S et al (2011) Phase II study of neoadjuvant bevacizumab and radiotherapy for resectable soft tissue sarcomas. Int J Radiat Oncol Biol Phys 81:1081–1090

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel H. Schanne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Schanne, D.H., Grosu, AL., Duda, D.G. (2017). Anti-angiogenics and Radiation Therapy. In: Marmé, D. (eds) Tumor Angiogenesis. Springer, Cham. https://doi.org/10.1007/978-3-319-31215-6_13-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31215-6_13-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31215-6

  • Online ISBN: 978-3-319-31215-6

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics