Skip to main content

HR8799: Imaging a System of Exoplanets

  • Living reference work entry
  • First Online:
Handbook of Exoplanets

Abstract

The HR 8799 planetary system is the most intriguing and spectacular system yet discovered by direct imaging. With four gas giant planets (5–7 MJup) orbiting at wide separations (15–70 AU) from an unusual, young A star, HR 8799 serves as a Rosetta Stone for atmospheric and planet formation physics. With direct access to the light from the planets themselves, extensive photometric and spectroscopic studies of the system have been undertaken, painting a fascinating picture of cloud formation, nonequilibrium chemistry, and potential elemental abundance measurements that can constrain formation pathways. The dynamical structure of the system is complex, with the four massive planets likely stabilized through participation in mean-motion resonances. Two belts of debris flank the planets, with a warm belt analogous to the solar system asteroid belt and a wide, cold ring comparable to the Kuiper belt. HR 8799 will continue to be studied extensively from the ground and space in the coming years, with the exciting possibility that additional planets remain to be discovered in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ali-Dib, M (2017) Disentangling hot Jupiters formation location from their chemical composition. MNRAS 476:2845

    Article  ADS  Google Scholar 

  • Apai D, Kasper M, Skemer A et al (2016) High-cadence, High-contrast Imaging for Exoplanet Mapping: Observations of the HR 8799 Planets with VLT/SPHERE Satellite-spot-corrected Relative Photometry. ApJ 820:40

    Article  ADS  Google Scholar 

  • Baines EK, White RJ, Huber D et al (2012) The CHARA Array Angular Diameter of HR 8799 Favors Planetary Masses for its Imaged Companions. ApJ 761:57

    Article  ADS  Google Scholar 

  • Baraffe I, Chabrier G, Barman TS, Allard F, Hauschildt PH (2003) Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458. A&A 402:701

    Article  ADS  Google Scholar 

  • Barman TS, Macintosh B, Konopacky QM, Marois C (2011) Clouds and Chemistry in the Atmosphere of Extrasolar Planet HR8799b. ApJ 733:65

    Article  ADS  Google Scholar 

  • Barman TS, Konopacky QM, Macintosh B, Marois C (2015) Simultaneous Detection of Water, Methane, and Carbon Monoxide in the Atmosphere of Exoplanet HR8799b. ApJ 804:61

    Article  ADS  Google Scholar 

  • Barrado y Navascués D, Stauffer JR, Song I, Caillault J-P (1999) The Age of β Pictoris. ApJ 520:L123

    Google Scholar 

  • Barry DC (1970) Spectral Classification of A and F Stars. ApJS 19:281

    Article  ADS  Google Scholar 

  • Becklin EE, Zuckerman B (1988) A low-temperature companion to a white dwarf star. Nature 336:656

    Article  ADS  Google Scholar 

  • Beuzit J-L, Feldt M, Dohlen K et al (2008) SPHERE: a ‘Planet Finder’ instrument for the VLT. Proc SPIE 7014:701418

    Article  Google Scholar 

  • Bergfors C, Brandner W, Janson M, Köhler R, Henning T (2011) VLT/NACO astrometry of the HR 8799 planetary system. L’-band observations of the three outer planets. A&A 528:A134

    Article  ADS  Google Scholar 

  • Biller BA, Liu MC, Wahhaj Z et al (2013) The Gemini/NICI Planet-Finding Campaign: The Frequency of Planets around Young Moving Group Stars. ApJ 777:160

    Article  ADS  Google Scholar 

  • Bonnefoy M, Zurlo A, Baudino JL et al (2016) First light of the VLT planet finder SPHERE. IV. Physical and chemical properties of the planets around HR8799. A&A 587:A58

    Article  Google Scholar 

  • Booth M, Jordán A, Casassus S et al (2016) Resolving the planetesimal belt of HR 8799 with ALMA. MNRAS 460:L10

    Article  ADS  Google Scholar 

  • Bowler BP, Liu MC, Dupuy TJ, Cushing MC (2010) Near-infrared Spectroscopy of the Extrasolar Planet HR 8799 b. ApJ 723:850

    Article  ADS  Google Scholar 

  • Brandt TD, McElwain MW, Turner EL et al (2014) A Statistical Analysis of SEEDS and Other High-contrast Exoplanet Surveys: Massive Planets or Low-mass Brown Dwarfs? ApJ 794:159

    Article  ADS  Google Scholar 

  • Burgasser AJ, Kirkpatrick JD, Brown ME et al (2002) The Spectra of T Dwarfs. I. Near-Infrared Data and Spectral Classification. ApJ 564:421

    Article  ADS  Google Scholar 

  • Casewell SL, Dobbie PD, Hodgkin ST et al (2007) Proper motion L and T dwarf candidate members of the Pleiades. MNRAS 378:1131

    Article  ADS  Google Scholar 

  • Chabrier G, Baraffe I, Allard F, Hauschildt P (2000) Evolutionary Models for Very Low-Mass Stars and Brown Dwarfs with Dusty Atmospheres. ApJ 542:464

    Article  ADS  Google Scholar 

  • Chauvin G, Lagrange A-M, Dumas C et al (2004) A giant planet candidate near a young brown dwarf. Direct VLT/NACO observations using IR wavefront sensing. A&A 425:L29

    Article  ADS  Google Scholar 

  • Chauvin G, Vigan A, Bonnefoy M et al (2015) The VLT/NaCo large program to probe the occurrence of exoplanets and brown dwarfs at wide orbits. II. Survey description, results, and performances. A&A 573:A127

    Article  Google Scholar 

  • Chen CH, Sargent BA, Bohac C et al (2006) Spitzer IRS Spectroscopy of IRAS-discovered Debris Disks. ApJS 166:351

    Article  ADS  Google Scholar 

  • Clanton C, Gaudi BS (2017) Constraining the Frequency of Free-floating Planets from a Synthesis of Microlensing, Radial Velocity, and Direct Imaging Survey Results. ApJ 834:46

    Article  ADS  Google Scholar 

  • Close LM, Males JR (2010) A Search for Wide Companions to the Extrasolar Planetary System HR 8799. ApJ 709:342

    Article  ADS  Google Scholar 

  • Contro B, Horner J, Wittenmyer RA, Marshall JP, Hinse TC (2016) Modelling the inner debris disc of HR 8799. MNRAS 463:191

    Article  ADS  Google Scholar 

  • Currie T, Burrows A, Itoh Y et al (2011) A Combined Subaru/VLT/MMT 1-5 μm Study of Planets Orbiting HR 8799: Implications for Atmospheric Properties, Masses, and Formation.ApJ 729:128

    Article  ADS  Google Scholar 

  • Currie T, Fukagawa M, Thalmann C, Matsumura S, Plavchan P (2012) Direct Detection and Orbital Analysis of the Exoplanets HR 8799 bcd from Archival 2005 Keck/NIRC2 Data. ApJ 755:L34

    Article  ADS  Google Scholar 

  • Currie T, Burrows A, Girard JH et al (2014) Deep Thermal Infrared Imaging of HR 8799 bcde: New Atmospheric Constraints and Limits on a Fifth Planet. ApJ 795:133

    Article  ADS  Google Scholar 

  • Esposito S, Mesa D, Skemer A et al (2013) LBT observations of the HR 8799 planetary system. First detection of HR 8799e in H band. A&A 549:A52

    Google Scholar 

  • Fabrycky DC, Murray-Clay RA (2010) Stability of the Directly Imaged Multiplanet System HR 8799: Resonance and Masses. ApJ 710:1408

    Article  ADS  Google Scholar 

  • Filippazzo JC, Rice EL, Faherty J et al (2015) Fundamental Parameters and Spectral Energy Distributions of Young and Field Age Objects with Masses Spanning the Stellar to Planetary Regime. ApJ 810:158

    Article  ADS  Google Scholar 

  • Ford EB (2005) Quantifying the Uncertainty in the Orbits of Extrasolar Planets. AJ 129:1706

    Article  ADS  Google Scholar 

  • Fukagawa M, Itoh Y, Tamura M et al (2009) H-Band Image of a Planetary Companion Around HR 8799 in 2002. ApJ 696:L1

    Article  ADS  Google Scholar 

  • Galicher R, Marois C, Macintosh B, Barman T, Konopacky Q (2011) M-band Imaging of the HR 8799 Planetary System Using an Innovative LOCI-based Background Subtraction Technique. ApJ 739:L41

    Article  ADS  Google Scholar 

  • Galicher R, Marois C, Macintosh B et al (2016) The International Deep Planet Survey. II. The frequency of directly imaged giant exoplanets with stellar mass. A&A 594:A63

    Article  ADS  Google Scholar 

  • Gehren T (1977) Model atmosphere analysis of HR 8799. A&A 59:303

    ADS  Google Scholar 

  • Gray RO, Kaye AB (1999) HR 8799: A Link between γ Doradus Variables and λ Bootis Stars. AJ 118:2993

    Article  ADS  Google Scholar 

  • Götberg Y, Davies MB, Mustill AJ, Johansen A, Church RP (2016) Long-term stability of the HR 8799 planetary system without resonant lock. A&A 592:A147

    Article  ADS  Google Scholar 

  • Goździewski K, Migaszewski C (2009) Is the HR8799 extrasolar system destined for planetary scattering?. MNRAS 397:L16

    Article  ADS  Google Scholar 

  • Goździewski K, Migaszewski C (2014) Multiple mean motion resonances in the HR 8799 planetary system. MNRAS 440:3140

    Article  ADS  Google Scholar 

  • Hinkley S, Carpenter JM, Ireland MJ, Kraus AL (2011) Observational Constraints on Companions Inside of 10 AU in the HR 8799 Planetary System. ApJ 730:L21

    Article  ADS  Google Scholar 

  • Hinz PM, Rodigas TJ, Kenworthy MA et al (2010) Thermal Infrared MMTAO Observations of the HR 8799 Planetary System. ApJ 716:417

    Article  ADS  Google Scholar 

  • Hughes AM, Wilner DJ, Andrews SM et al (2011) Resolved Submillimeter Observations of the HR 8799 and HD 107146 Debris Disks. ApJ 740:38

    Article  ADS  Google Scholar 

  • Ingraham P, Marley MS, Saumon D et al (2014) Gemini Planet Imager Spectroscopy of the HR 8799 Planets c and d. ApJ 794:L15

    Article  ADS  Google Scholar 

  • Kastner JH, Zuckerman B, Weintraub DA, Forveille T (1997) X-ray and molecular emission from the nearest region of recent star formation. Science 277:67

    Article  ADS  Google Scholar 

  • Kaye AB, Strassmeier KG (1998) CA II H&K survey of Gamma Doradus candidates. MNRAS 294:L35

    Article  ADS  Google Scholar 

  • Kaye AB, Handler G, Krisciunas K, Poretti E, Zerbi FM (1999) Gamma Doradus Stars: Defining a New Class of Pulsating Variables. PASP 111:840

    Article  ADS  Google Scholar 

  • Konopacky QM, Barman TS, Macintosh BA, Marois C (2013) Detection of Carbon Monoxide and Water Absorption Lines in an Exoplanet Atmosphere. Science 339:1398

    Article  ADS  Google Scholar 

  • Konopacky QM, Marois C, Macintosh BA et al (2016) Astrometric Monitoring of the HR 8799 Planets: Orbit Constraints from Self-consistent Measurements. AJ 152:28

    Article  ADS  Google Scholar 

  • Lafrenière D, Doyon R, Marois C et al (2007) The Gemini Deep Planet Survey. ApJ 670:1367

    Article  ADS  Google Scholar 

  • Lafrenière D, Marois C, Doyon R, Nadeau D, Artigau É (2007) A New Algorithm for Point-Spread Function Subtraction in High-Contrast Imaging: A Demonstration with Angular Differential Imaging. ApJ 660:770

    Article  ADS  Google Scholar 

  • Lafrenière D, Marois C, Doyon R, Barman T (2009) HST/NICMOS Detection of HR 8799 b in 1998. ApJ 694:L148

    Article  ADS  Google Scholar 

  • Lavie B, Mendonça JM, Mordasini C et al (2016) HELIOS-Retrieval: An Open-source, Nested Sampling Atmospheric Retrieval Code, Application to the HR 8799 Exoplanets and Inferred Constraints for Planet Formation. arXiv:1610.03216

    Google Scholar 

  • Liu MC, Wahhaj Z, Biller BA et al (2010) The Gemini NICI Planet-Finding Campaign. Proc SPIE 7736:77361K

    Article  Google Scholar 

  • Lowrance PJ, Becklin EE, Schneider G et al (2005) An Infrared Coronagraphic Survey for Substellar Companions. AJ 130:1845

    Article  ADS  Google Scholar 

  • Macintosh BA, Becklin EE, Kaisler D, Konopacky Q, Zuckerman B (2003) Deep Keck Adaptive Optics Searches for Extrasolar Planets in the Dust of Eridani and Vega. ApJ 594:538

    Article  ADS  Google Scholar 

  • Macintosh B, Graham JR, Ingraham P et al (2014) First light of the Gemini Planet Imager. Proc Natl Acad Sci 111:12661

    Article  ADS  Google Scholar 

  • Maire A-L, Skemer AJ, Hinz PM et al (2015) The LEECH Exoplanet Imaging Survey. Further constraints on the planet architecture of the HR 8799 system. A&A 576:A133

    Article  Google Scholar 

  • Mamajek EE, Lawson WA, Feigelson ED (1999) The η Chamaeleontis Cluster: A Remarkable New Nearby Young Open Cluster. ApJ 516:L77

    Article  ADS  Google Scholar 

  • Marley MS, Saumon D, Goldblatt C (2010) A Patchy Cloud Model for the L to T Dwarf Transition. ApJ 723:L117

    Article  ADS  Google Scholar 

  • Marley MS, Saumon D, Cushing M et al (2012) Masses, Radii, and Cloud Properties of the HR 8799 Planets. ApJ 754:135

    Article  ADS  Google Scholar 

  • Marois C, Lafrenière D, Doyon R, Macintosh B, Nadeau D (2006) Angular Differential Imaging: A Powerful High-Contrast Imaging Technique. ApJ 641:556

    Article  ADS  Google Scholar 

  • Marois C, Macintosh B, Barman T et al (2008) Direct Imaging of Multiple Planets Orbiting the Star HR 8799. Science 322:1348

    Article  ADS  Google Scholar 

  • Marois C, Zuckerman B, Konopacky QM, Macintosh B, Barman T (2010) Images of a fourth planet orbiting HR 8799. Nature 468:1080

    Article  ADS  Google Scholar 

  • Matthews B, Kennedy G, Sibthorpe B et al (2014) Resolved Imaging of the HR 8799 Debris Disk with Herschel. ApJ 780:97

    Article  ADS  Google Scholar 

  • Mawet D, Riaud P, Absil O, Surdej J (2005) Annular Groove Phase Mask Coronagraph. ApJ 633:1191

    Article  ADS  Google Scholar 

  • McCarthy C, Zuckerman B (2004) The Brown Dwarf Desert at 75-1200 AU. AJ 127:2871

    Article  ADS  Google Scholar 

  • Metchev SA, Hillenbrand LA (2004) Initial Results from the Palomar Adaptive Optics Survey of Young Solar-Type Stars: A Brown Dwarf and Three Stellar Companions. ApJ 617:1330

    Article  ADS  Google Scholar 

  • Metchev S, Marois C, Zuckerman B (2009) Pre-Discovery 2007 Image of the HR 8799 Planetary System. ApJ 705:L204

    Article  ADS  Google Scholar 

  • Moór A, Ábrahám P, Derekas A et al (2006) Nearby Debris Disk Systems with High Fractional Luminosity Reconsidered. ApJ 644:525

    Article  ADS  Google Scholar 

  • Moro-Martín A, Rieke GH, Su KYL (2010) Could the Planets Around HR 8799 be Brown Dwarfs? ApJ 721:L199

    Article  ADS  Google Scholar 

  • Moya A, Amado PJ, Barrado D et al (2010) Age determination of the HR8799 planetary system using asteroseismology. MNRAS 405:L81

    Article  ADS  Google Scholar 

  • Nakajima T, Oppenheimer BR, Kulkarni SR et al (1995) Discovery of a cool brown dwarf. Nature 378:463

    Article  ADS  Google Scholar 

  • Nielsen EL, Liu MC, Wahhaj Z et al (2013) The Gemini NICI Planet-Finding Campaign: The Frequency of Giant Planets around Young B and A Stars. ApJ 776:4

    Article  ADS  Google Scholar 

  • Öberg KI, Murray-Clay R, Bergin EA (2011) The Effects of Snowlines on C/O in Planetary Atmospheres. ApJ 743:L16

    Article  ADS  Google Scholar 

  • Oblak E, Considère S, Chareton M (1976) A&AS 24:69

    ADS  Google Scholar 

  • Oppenheimer BR, Beichman C, Brenner D et al (2012) Project 1640: the world’s first ExAO coronagraphic hyperspectral imager for comparative planetary science. Proc SPIE 8447:844720

    Article  Google Scholar 

  • Oppenheimer BR, Baranec C, Beichman C et al (2013) Reconnaissance of the HR 8799 Exosolar System. I. Near-infrared Spectroscopy. ApJ 768:24

    Google Scholar 

  • Patience J, Bulger J, King RR et al (2011) Spatially resolved submillimeter imaging of the HR 8799 debris disk. A&A 531:L17

    Article  ADS  Google Scholar 

  • Piso A-MA, Öberg KI, Birnstiel T, Murray-Clay RA (2015) C/O and Snowline Locations in Protoplanetary Disks: The Effect of Radial Drift and Viscous Gas Accretion. ApJ 815:109

    Article  ADS  Google Scholar 

  • Pueyo L, Soummer R, Hoffmann J et al (2015) Reconnaissance of the HR 8799 Exosolar System. II. Astrometry and Orbital Motion. ApJ 803:31

    Google Scholar 

  • Rajan A, Barman T, Soummer R et al (2015) Characterizing the Atmospheres of the HR8799 Planets with HST/WFC3. ApJ 809:L33

    Article  ADS  Google Scholar 

  • Reidemeister M, Krivov AV, Schmidt TOB et al (2009) A possible architecture of the planetary system HR 8799. A&A 503:247

    Article  ADS  Google Scholar 

  • Roddier F, Roddier C (1997) Stellar Coronograph with Phase Mask. PASP 109:815

    Article  ADS  Google Scholar 

  • Sadakane K, Nishida M (1986) Twelve additional ‘Vega-like’ stars. PASP 98:685

    Article  ADS  Google Scholar 

  • Sadakane K (2006) λ Bootis-Like Abundances in the Vega-Like, γ Doradus Type-Pulsator HD 218396. PASJ 58:1023

    Article  ADS  Google Scholar 

  • Skemer AJ, Hinz PM, Esposito S et al (2012) First Light LBT AO Images of HR 8799 bcde at 1.6 and 3.3 μm: New Discrepancies between Young Planets and Old Brown Dwarfs. ApJ 753:14

    Article  ADS  Google Scholar 

  • Skemer AJ, Marley MS, Hinz PM et al (2014) Directly Imaged L-T Transition Exoplanets in the Mid-infrared. ApJ 792:17

    Article  ADS  Google Scholar 

  • Sódor Á, Chené A-N, De Cat P et al (2014) MOST light-curve analysis of the γ Doradus pulsator HR 8799, showing resonances and amplitude variations. A&A 568:A106

    Article  ADS  Google Scholar 

  • Soummer R (2005) Apodized Pupil Lyot Coronagraphs for Arbitrary Telescope Apertures. ApJ 618:L161

    Article  ADS  Google Scholar 

  • Soummer R, Brendan Hagan J, Pueyo L et al (2011) Orbital Motion of HR 8799 b, c, d Using Hubble Space Telescope Data from 1998: Constraints on Inclination, Eccentricity, and Stability. ApJ 741:55

    Article  ADS  Google Scholar 

  • Su KYL, Rieke GH, Stapelfeldt KR et al (2009) The Debris Disk Around HR 8799. ApJ 705:314

    Article  ADS  Google Scholar 

  • Sudol JJ, Haghighipour N (2012) High-mass, Four-planet Configurations for HR 8799: Constraining the Orbital Inclination and Age of the System. ApJ 755:38

    Article  ADS  Google Scholar 

  • Sylvester RJ, Skinner CJ, Barlow MJ, Mannings V (1996) Optical, infrared and millimetre-wave properties of Vega-like systems. MNRAS 279:915

    Article  ADS  Google Scholar 

  • Tuthill PG, Monnier JD, Danchi WC, Wishnow EH, Haniff CA (2000) Michelson Interferometry with the Keck I Telescope. PASP 112:555

    Article  ADS  Google Scholar 

  • Torres CAO, Quast GR, Melo CHF, Sterzik MF (2008) Young Nearby Loose Associations. Handbook of star forming regions, vol II, 5, 757. ASP Monograph Publications, San Francisco

    Google Scholar 

  • van Leeuwen F (2007) Validation of the new Hipparcos reduction. A&A 474:653

    Article  ADS  Google Scholar 

  • Wertz O, Absil O, Gómez González CA et al (2017) VLT/SPHERE robust astrometry of the HR8799 planets at milliarcsecond-level accuracy. Orbital architecture analysis with PyAstrOFit. A&A 598:A83

    Article  ADS  Google Scholar 

  • Williams JP, Andrews SM (2006) The Dust Properties of Eight Debris Disk Candidates as Determined by Submillimeter Photometry. ApJ 653:1480

    Article  ADS  Google Scholar 

  • Wright DJ, Chené A-N, De Cat P et al (2011) Determination of the Inclination of the Multi-planet Hosting Star HR 8799 Using Asteroseismology. ApJ 728:L20

    Article  ADS  Google Scholar 

  • Zuckerman B, Song I (2004) Young Stars Near the Sun. ARA&A 42:685

    Article  ADS  Google Scholar 

  • Zuckerman B, Rhee JH, Song I, Bessell MS (2011) The Tucana/Horologium, Columba, AB Doradus, and Argus Associations: New Members and Dusty Debris Disks. ApJ 732:61

    Article  ADS  Google Scholar 

  • Zurlo A, Vigan A, Galicher R et al (2016) First light of the VLT planet finder SPHERE. III. New spectrophotometry and astrometry of the HR 8799 exoplanetary system. A&A 587:A57

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Christian Marois, whose persistence made HR 8799 the system that keeps on giving.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quinn M. Konopacky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Konopacky, Q.M., Barman, T.S. (2017). HR8799: Imaging a System of Exoplanets. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-30648-3_36-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30648-3_36-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30648-3

  • Online ISBN: 978-3-319-30648-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics