Skip to main content

Powder Selection

  • Chapter
  • First Online:
Particulate Composites
  • 1287 Accesses

Abstract

Once a composition is determined, the next important step in building a particulate composite focuses on identification of the powders to deliver the desired performance. Sometimes the particles are custom produced to suit the application requirements, but cost usually dictates selection of existing powders whenever possible. Available powders may be modified to match the consolidation process or envisioned final microstructure. Proper particle selection is crucial to attaining the desired phase morphology to ensure proper performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Khambekar, B.H. Pittenger, Understanding and preventing metal dust hazards. Int. J. Powder Metall. 49(4), 39–47 (2013)

    Google Scholar 

  2. A. Jillavenkatesa, S.J. Dapkunas, L.S.H. Lum, Practice Guide Particle Size Analysis: Particle Size Characterization, Special Publication 960-1 (National Institute of Standards and Technology, Gaithersburg, 2001)

    Google Scholar 

  3. R.M. German, S.J. Park, Handbook of Mathematical Relations in Particulate Materials Processing (Wiley, Hoboken, 2008)

    Book  Google Scholar 

  4. M.F. Ashby, Materials Selection in Mechanical Design, 4th edn. (Butterworth-Heinemann, Oxford, 2010)

    Google Scholar 

  5. A. Lazzeri, Y.S. Thio, R.E. Cohen, Volume strain measurements on CaCO3/polypropylene particulate composites: the effect of particle size. J. Appl. Polym. Sci. 91, 925–935 (2004)

    Article  Google Scholar 

  6. H.M. Jang, W.E. Rhine, H.K. Bowen, Densification of alumina-silicon carbide powder composites: II, microstructural evolution and densification. J. Am. Ceram. Soc. 72, 954–958 (1989)

    Article  Google Scholar 

  7. M.H. Bocanegra-Bernal, Review: hot isostatic pressing (HIP) technology and its applications to metals and ceramics. J. Mater. Sci. 39, 6399–6420 (2004)

    Article  Google Scholar 

  8. J.L. Johnson, Economics of processing nanoscale powders. Int. J. Powder Metall. 44(1), 44–54 (2008)

    Google Scholar 

  9. S.Y. Fu, X.Q. Feng, B. Lauke, Y.W. Mai, Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos. Part B 39, 933–961 (2008)

    Article  Google Scholar 

  10. A.S. Ioselevich, A.A. Kornyshev, Approximate symmetry laws for percolation in complex systems: percolation in polydisperse composites. Phys. Rev. E 65, (2002). paper 021301

    Google Scholar 

  11. J. Gurland, An estimate of contact and continuity of dispersions in opaque samples. Trans. Metall. Soc. AIME 236, 642–646 (1966)

    Google Scholar 

  12. J.M. Montes, F.G. Cuevas, J.A. Rodriguez, E.J. Herrera, Electrical conductivity of sintered powder compacts. Powder Metall. 48, 343–344 (2005)

    Article  Google Scholar 

  13. C.W. Nan, Y. Shen, J. Ma, Physical properties of composites near percolation. Annu. Rev. Mater. Res. 40, 131–151 (2010)

    Article  Google Scholar 

  14. R.M. German, Particle Packing Characteristics (Metal Powder Industries Federation, Princeton, 1989)

    Google Scholar 

  15. W. Haller, Rearrangement kinetics of the liquid-liquid immiscible microphases in Alkali Borosilicate melts. J. Chem. Phys. 42, 686–693 (1965)

    Article  Google Scholar 

  16. D. He, N.N. Ekere, Effect of particle size ratio on the conducting percolation threshold of granular conductive-insulating composites. J. Phys. D Appl. Phys. 37, 1848–1852 (2004)

    Article  Google Scholar 

  17. D. Stauffer, A. Aharony, Introduction to Percolation Theory, 2nd edn. (Taylor and Francis, London, 1992)

    Google Scholar 

  18. J.V. Milewski, in Packing Concepts in the Use of Filler and Reinforcement Combinations, ed. by J.V. Milewski, H.S. Katz. Handbook of Reinforcements for Plastics (Van Nostrand Reinhold, New York, 1987), pp. 14–33

    Google Scholar 

  19. J.E. Spowart, D.B. Miracle, The influence of reinforcement morphology on the tensile response of 6061/SiC/25p discontinuously-reinforced aluminum. Mater. Sci. Eng. A357, 111–123 (2003)

    Article  Google Scholar 

  20. L.Y. Yi, K.J. Dong, R.P. Zou, A.B. Yu, Radical tessellation of the packing of ternary mixtures of spheres. Powder Technol. 224, 129–137 (2012)

    Article  Google Scholar 

  21. R.M. German, Powder Metallurgy and Particulate Materials Processing (Metal Powder Industries Federation, Princeton, 2005)

    Google Scholar 

  22. K. Lu, Nanoparticulate Materials Synthesis, Characterization and Processing (Wiley, Hoboken, 2013)

    Google Scholar 

  23. A.W. Nienow, M.F. Edwards, N. Harnby, Mixing in the Process Industries, 2nd edn. (Butterworth-Heinemann, Oxford, 1997)

    Google Scholar 

  24. K.H. Kate, R.K. Enneti, S.J. Park, R.M. German, S.V. Atre, Predicting powder-polymer mixture properties for PIM design. Crit. Rev. Solid State Mater. Sci. 39, 197–214 (2014)

    Article  Google Scholar 

  25. B.R. Sundlof, C. Perry, W.M. Carty, E.H. Klingenberg, L.A. Schultz, Additive interactions in ceramic processing. Ceram. Bull. 79, 67–72 (2000)

    Google Scholar 

  26. S. Luding, Introduction to discrete element methods. Eur. J. Environ. Civil Eng. 12, 785–826 (2008)

    Article  Google Scholar 

  27. D. He, N.N. Ekere, L. Cai, Computer simulation of random packing of unequal particles. Phys. Rev. E 60, 7098–7104 (1999)

    Article  Google Scholar 

  28. C.L. Martin, D. Bouvard, S. Shima, Study of particle rearrangement during powder compaction by the discrete element method. J. Mech. Phys. Solids 51, 667–693 (2003)

    Article  Google Scholar 

  29. J.L. Johnson, Opportunities for PM processing of metal matrix composites. Int. J. Powder Metall. 47(2), 19–28 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

German, R.M. (2016). Powder Selection. In: Particulate Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-29917-4_6

Download citation

Publish with us

Policies and ethics