Skip to main content

Constituents

  • Chapter
  • First Online:
Particulate Composites
  • 1273 Accesses

Abstract

Composite design starts with the evaluation of existing materials and their properties. The initial intent is to determine what fits with the application needs. Material properties for the constituents are assembled in handbooks, database, web sites, trade association publications, and commercial programs. Several sources are listed as references [1–31]. Software programs are effective since the data collections include a broad range of candidates. Data from these resources are employed in this chapter to illustrate a diverse range of examples [15, 32–41]. It is immediately clear that thousands of material options are available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anonymous, Cambridge Engineering Selector (Granta Design, Cambridge, updated annually)

    Google Scholar 

  2. Anonymous, NIST Standard Reference Data—Materials Properties, Gaithersburg, www.nist.gov/srd/materials.cfm and www.ceramics.nist.gov/srd/summary

  3. G.S. Brady, H.R. Clauser, J. Vaccari, Materials Handbook, 15th edn. (McGraw-Hill, New York, 2002)

    Google Scholar 

  4. K.J.A. Brookes, Hardmetals and Other Hard Materials, 3rd edn. (International Carbide Data, East Barnet, 1998)

    Google Scholar 

  5. H.E. Boyer, T.L. Gall (eds.), Metals Handbook Desk Edition (ASM International, Materials Park, 1998)

    Google Scholar 

  6. Q. Chen, G.A. Thouas, Metallic implant biomaterials. Mater. Sci. Eng. R87, 1–57 (2015)

    Google Scholar 

  7. Y.M. Chiang, D. Birnie, W.D. Kingery, Physical Ceramics (Wiley, New York, 1997)

    Google Scholar 

  8. J.R. Davis (ed.), Handbook of Materials for Medical Devices (ASM International, Materials Park, 2003)

    Google Scholar 

  9. J. Emsley, The Elements, 3rd edn. (Oxford University Press, Oxford, 2000)

    Google Scholar 

  10. P. Ettmayer, Hardmetals and cermets. Annu. Rev. Mater. Sci. 19, 145–164 (1989)

    Article  Google Scholar 

  11. W.F. Gale, T.C. Totemeier, Smithells Metals Reference Book, 8th edn. (Elsevier, Oxford, 2004)

    Google Scholar 

  12. R.M. German, A-Z of Powder Metallurgy (Elsevier Scientific, Oxford, 2005)

    Google Scholar 

  13. Y. Hirata, Representation of thermal expansion coefficient of solid material with particulate inclusion. Ceram. Int. 41, 2706–2713 (2015)

    Article  Google Scholar 

  14. K. Kondoh, in Titanium Metal Matrix Composites by Powder Metallurgy Routes, ed. by M.A. Qian, F.H. Froes. Titanium Powder Metallurgy (Elsevier, Oxford, 2015), pp. 277–297

    Google Scholar 

  15. J. Konstanty, Powder Metallurgy Diamond Tools (Elsevier, Amsterdam, 2005)

    Google Scholar 

  16. H. Lange, G. Wotting, G. Winter, Silicon nitride—from powder synthesis to ceramic materials. Angew. Chem. Int. 30, 1579–1597 (2003)

    Article  Google Scholar 

  17. W. Lassner, W.D. Schubert, Tungsten: Properties, Chemistry Technology of the Element, Alloys, and Chemical Compounds (Kluwer, New York, 1999)

    Book  Google Scholar 

  18. P.W. Lee, Y. Trudel, R. Iacocca, R.M. German, B.L. Ferguson, W.B. Eisen, K. Moyer, D. Madan, H. Sanderow (eds.), Powder Metal Technologies and Applications, vol. 7 (ASM Handbook, ASM International, Materials Park, 1998)

    Google Scholar 

  19. J.V. Milewski, H.S. Katz, Handbook of Reinforcements for Plastics (Van Nostrand Reinhold, New York, 1987)

    Google Scholar 

  20. R. Morrell, Handbook of Properties of Technical and Engineering Ceramics (Her Majesty’s Stationery Office, London, 1987)

    Google Scholar 

  21. R.G. Munro, Material properties of titanium diboride. J. Res. Natl. Inst. Stand. Technol. 105, 709–720 (2000)

    Article  Google Scholar 

  22. J. Ormerod, The physical metallurgy and processing of sintered rare earth permanent magnets. J. Less Common Met. 111, 49–69 (1985)

    Article  Google Scholar 

  23. H.O. Pierson, Handbook of Refractory Carbides and Nitrides (Noyes, Westwood, 1996)

    Google Scholar 

  24. G.D. Rieck, Tungsten and Its Compounds (Pergamon Press, Oxford, 1967)

    Google Scholar 

  25. R. Riedel (ed.), Handbook of Ceramic Hard Materials (Wiley-VCH, Weinheim, 2000)

    Google Scholar 

  26. S.J. Schneider, in Ceramics and Glasses, Engineered Materials Handbook, vol. 4 (ASM International, Materials Park, 1991)

    Google Scholar 

  27. P. Schwarzkopf, R. Kieffer, W. Leszynski, F. Benesovsky, Refractory Hard Metals: Borides, Carbides, Nitrides, and Silicides (MacMillan, New York, 1953)

    Google Scholar 

  28. A.B. Strong, Plastics—Materials and Processing, 3rd edn. (Prentice Hall, Upper Saddle River, 2006)

    Google Scholar 

  29. G.S. Upadhyaya, Nature and Properties of Refractory Carbides (Nova Science, Commack, 1996)

    Google Scholar 

  30. J.B. Watchman, Mechanical Properties of Ceramics (Wiley, New York, 1996)

    Google Scholar 

  31. A.W. Weimer, Carbide, Nitride, and Boride Materials Synthesis and Processing (Chapman and Hall, London, 1997)

    Google Scholar 

  32. C. Zweben, Advances in high performance thermal management materials: a review. J. Adv. Mater. 39, 3–10 (2007)

    Google Scholar 

  33. K.J.A. Brookes, Hardmetals and Other Hard Materials, 3rd edn. (International Carbide Data, Hertsfordshire, 1998)

    Google Scholar 

  34. J.P. Schluep, Component parts for watch movements, U.S. Patent 3,942,317 A, 1976

    Google Scholar 

  35. A.V. Nadkarni, J.T. Abrams, Lead-free frangible bullets and process for making same, U.S. Patent 6,536,352 B1, 2003

    Google Scholar 

  36. S.G. Caldwell, A.L. Madison, A review of tungsten heavy alloy utilization in isotope transport containers. Proceedings WM Symposia, Tempe, AZ, 2013, paper 13380

    Google Scholar 

  37. J.S. Cook, P.L. Rossiter, Rare-earth iron boron supermagnets. Crit. Rev. Solid State Mater. Sci. 15, 509–550 (1989)

    Article  Google Scholar 

  38. S. Tiller, Soft magnetic composites in the development of a new compact transversal flux electric motor. Powder Metall. Rev. 3, 75–77 (2013)

    Google Scholar 

  39. R.B. Cauffiel, Apparatus for descaling metal strips, U.S. Patent 4,019,282 A, 1977

    Google Scholar 

  40. P. Gloeckner, K. Dullenkopf, M. Flouros, Direct outer ring cooling of a high speed jet engine mainshaft ball bearing: experimental investigation results. J. Eng. Gas Turbines Power 133, (2011). paper 062603

    Google Scholar 

  41. W.J. Cheong, Fritting techniques in chromatography. J. Sep. Sci. 37, 603–617 (2014)

    Article  Google Scholar 

  42. R. Haynes, The Mechanical Behaviour of Sintered Metals (Freund Publishing House, London, 1981)

    Google Scholar 

  43. R.L. Coble, W.D. Kingery, Effect of porosity on physical properties of sintered alumina. J. Am. Ceram. Soc. 39, 377–385 (1956)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

German, R.M. (2016). Constituents. In: Particulate Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-29917-4_5

Download citation

Publish with us

Policies and ethics