Skip to main content

Introduction

  • Chapter
  • First Online:
Particulate Composites
  • 1266 Accesses

Abstract

Composites use two or more phases to attain property combinations not possible from either phase alone. Chocolate is an everyday example of a composite consisting of sugar, milk solids, cocoa, and cocoa butter. Different ratios of the ingredients lead to semi-sweet, milk chocolate, or dark chocolate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Balasubramanian, Composite Materials and Processing (CRC Press, Boca Raton, 2014)

    Google Scholar 

  2. S.K. Bhattacharya, Metal Filled Polymers (Marcel Dekker, New York, 1986)

    Google Scholar 

  3. F. Carmona, Conducting filled polymers. Phys. A Stat. Mech. Appl. 157, 461–469 (1989)

    Article  Google Scholar 

  4. K.K. Chawla, Composite Materials Science and Engineering, 3rd edn. (Springer, New York, 2012)

    Google Scholar 

  5. D.D.L. Chung, Composite Materials: Functional Materials for Modern Technologies (Springer, New York, 2003)

    Book  Google Scholar 

  6. W.F. Gale, T.C. Totemeier (eds.), Smithells Metals Reference Book, 3rd edn. (Elsevier Butterworth-Heinemann, Oxford, 2004)

    Google Scholar 

  7. F. Matthews, R.D. Rawlings, Composite Materials: Engineering and Science (Woodhead, Cambridge, 1999)

    Google Scholar 

  8. J.V. Milewski, H.S. Katz (eds.), Handbook of Reinforcements for Plastics (Van Nostrand Reinhold, New York, 1987)

    Google Scholar 

  9. D.B. Miracle, S.L. Donaldson, in Introduction to Composites, ASM Handbook of Composite Materials, vol 21 (ASM International, Materials Park, 2001)

    Google Scholar 

  10. R. Riedel (ed.), Handbook of Ceramic Hard Materials (Wiley-VCH, Weinheim, 2000)

    Google Scholar 

  11. J.W.C. Dunlop, P. Fratzl, Biological composites. Annu. Rev. Mater. Res. 40, 1–24 (2010)

    Article  Google Scholar 

  12. Q. Chen, G.A. Thouas, Metallic implant biomaterials. Mater. Sci. Eng. R87, 1–57 (2015)

    Google Scholar 

  13. W.D. Kingery, in Sintering From Prehistoric Times to the Present, eds. by A.C.D. Chaklader, J.A. Lund. Sintering’91 (Trans Tech Publ., Brookfield, 1992), pp. 1–10

    Google Scholar 

  14. J.R. Kelly, I. Nishimura, S.D. Campbell, Ceramics in dentistry: historical roots and current perspectives. J. Prosthet. Dent. 75, 18–32 (1996)

    Article  Google Scholar 

  15. R.M. German, Sintering: From Empirical Observations to Scientific Principles (Elsevier, Oxford, 2014)

    Google Scholar 

  16. J.A.P. Elorz, J.I. Verdja-Gonzalez, J.P. Sancho-Martinez, N. Vilela, Melting and sintering platinum in the 18th Century: the secret of the Spanish. J. Met. 51(10), 9–12 (1999). 41

    Google Scholar 

  17. M. Noguez, R. Garcia, G. Salas, T. Robert, J. Ramirez, About the Pre-Hispanic Au-Pt ‘Sintering’ technique. Int. J. Powder Metall. 43(1), 27–33 (2007)

    Google Scholar 

  18. K.J.A. Brookes, Half a century of hardmetals. Met. Powder Rep. 50(12), 22–28 (1995)

    Article  Google Scholar 

  19. A. Bose, Advances in Particulate Materials (Butterworth-Heinemann, Boston, 1995)

    Google Scholar 

  20. S.J. Schneider, in Ceramics and Glasses, Engineered Materials Handbook, vol 4 (ASM International, Materials Park, 1991)

    Google Scholar 

  21. P. Samal, J. Newkirk (eds.), Powder Metallurgy, ASM Handbook, vol 7 (ASM International, Materials Park, 2015)

    Google Scholar 

  22. R. Morrell, Handbook of Properties of Technical and Engineering Ceramics (Her Majesty’s Stationery Office, London, 1987)

    Google Scholar 

  23. P. Schwarzkopf, R. Kieffer, W. Leszynski, F. Benesovsky, Refractory Hard Metals: Borides, Carbides, Nitrides, and Silicides, (MacMillan, New York, 1953)

    Google Scholar 

  24. D.J. Green, Introduction to the Mechanical Properties of Ceramics (Cambridge University Press, Cambridge, 1998)

    Book  Google Scholar 

  25. J.B. Watchman, Mechanical Properties of Ceramics (Wiley, New York, 1996)

    Google Scholar 

  26. A.B. Strong, Plastics—Materials and Processing, 3rd edn. (Prentice Hall, Upper Saddle River, 2006)

    Google Scholar 

  27. N. Barbat, K. Zangeneh-Madar, Preparation of Ti-Ni binary powder via electroless nickel plating of titanium powder. Powder Metall. 57, 97–102 (2014)

    Article  Google Scholar 

  28. C.L. Hu, M.N. Rahaman, Factors controlling the sintering of ceramic particulate composites: II, coated inclusion particles. J. Am. Ceram. Soc. 75, 2066–2070 (1992)

    Article  Google Scholar 

  29. D.S. McLachlan, M. Blaszkiewicz, R.E. Newnham, Electrical resistivity of composites. J. Am. Ceram. Soc. 73, 2187–2203 (1990)

    Article  Google Scholar 

  30. R.M. German, Powder Metallurgy and Particulate Materials Processing (Metal Powder Industries Federation, Princeton, 2005)

    Google Scholar 

  31. A. Elsayed, W. Li, O.A. El Kady, W.M. Daoush, E.A. Olevsky, R.M. German, Experimental investigation on the synthesis of W-Cu nanocomposite through spark plasma sintering. J. Alloys Compd. 639, 373–380 (2015)

    Article  Google Scholar 

  32. T. Schafter, J. Burghaus, W. Pieper, F. Petzoldt, M. Busse, New concept of Si-Fe based sintered soft magnetic composite. Powder Metall. 58, 106–111 (2015)

    Article  Google Scholar 

  33. W.M. Daoush, H.S. Park, S.H. Hong, Fabrication of TiN/cBN and TiC/diamond coated particles by titanium deposition process. Trans. Nonferrous Met. Soc. China 24, 3562–3570 (2014)

    Article  Google Scholar 

  34. J.W. Kim, Y.D. Kim, Sintering of Nd-Fe-B magnets from Dy coated powder. J. Korean Powder Metall. Inst. 20, 169–173 (2013)

    Article  Google Scholar 

  35. E.A. Anumol, B. Viswanath, P.G. Ganesan, Y. Shi, G. Ramanath, N. Ravishankar, Surface diffusion driven nanoshell formation by controlled sintering of mesoporous nanoparticle aggregates. Nanoscale 2, 1423–1425 (2010)

    Article  Google Scholar 

  36. B. Ozkal, A. Upadhyaya, M.L. Ovecoglu, R.M. German, Comparative properties of 85 W-15Cu powder prepared using mixing, milling, and coating techniques. Powder Metall. 53, 236–243 (2010)

    Article  Google Scholar 

  37. X. Liang, C. Jia, K. Chu, H. Chen, J. Nie, W. Gao, Thermal conductivity and microstructure of Al/diamond composites with Ti coated diamond particles consolidated by spark plasma sintering. J. Comp. Mater. 46, 1127–1136 (2011)

    Article  Google Scholar 

  38. Z.A. Munir, D.V. Quach, M. Ohyanagi, Electric current activation of sintering: A review of the pulsed electric current sintering process. J. Am. Ceram. Soc. 94, 1–19 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

German, R.M. (2016). Introduction. In: Particulate Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-29917-4_1

Download citation

Publish with us

Policies and ethics