Skip to main content

On-Chip Power Grids with Multiple Supply Voltages

  • Chapter
  • First Online:
On-Chip Power Delivery and Management

Abstract

With the on-going miniaturization of integrated circuit feature size, the design of power and ground distribution networks has become a challenging task. With technology scaling, the requirements placed on the on-chip power distribution system have significantly increased. These challenges arise from shorter rise/fall times, lower noise margins, higher currents, and increased current densities. Furthermore, the power supply voltage has decreased to lower dynamic power dissipation. A greater number of transistors increases the total current drawn from the power supply. Simultaneously, the higher switching speed of a greater number of smaller transistors produces faster and larger current transients in the power distribution network [286]. The higher currents produce large IR voltage drops. Fast current transients lead to large L dIdt inductive voltage drops (\(\Delta I\) noise) within the power distribution networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Popovich, E.G. Friedman, Decoupling capacitors for multi-voltage power distribution systems. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 14(3), 217–228 (2006)

    Google Scholar 

  2. A.V. Mezhiba, E.G. Friedman, Power Distribution Networks in High Speed Integrated Circuits (Kluwer Academic, Norwell, 2004)

    Book  Google Scholar 

  3. E.B. Rosa, The self and mutual inductance of linear conductors. Bull. Natl. Bur. Stand. 4(2), 301–344 (1908). Government Printing Office, Washington, DC

    Google Scholar 

  4. M. Kamon, M.J. Tsuk, J. White, FastHenry: a multipole-accelerated 3-D inductance extraction program. IEEE Trans. Microw. Theory Techn. 42(9), 1750–1758 (1994)

    Article  Google Scholar 

  5. A.V. Mezhiba, E.G. Friedman, Properties of on-chip inductive current loops, in Proceedings of the ACM Great Lakes Symposium on Very Large Scale Integration, pp. 12–17, Apr 2002

    Google Scholar 

  6. A.V. Mezhiba, E.G. Friedman, Inductive properties of high-performance power distribution grids. IEEE Trans. Very Large Scale Integr. (VLSI) Circuits 10(6), 762–776 (2002)

    Google Scholar 

  7. W.S. Song, L.A. Glasser, Power distribution techniques for VLSI circuits. IEEE J. Solid-State Circuits SC–21(1), 150–156, (1986)

    Google Scholar 

  8. A.V. Mezhiba, E.G. Friedman, Scaling trends of on-chip power distribution noise. IEEE Trans. Very Large Scale Integr. (VLSI) Circuits 12(4), 386–394 (2004)

    Google Scholar 

  9. D.A. Priore, Inductance on silicon for sub-micron CMOS VLSI, in Proceedings of the IEEE Symposium on VLSI Circuits, pp. 17–18, May 1993

    Google Scholar 

  10. L.-R. Zheng, H. Tenhunen, Effective power and ground distribution scheme for deep submicron high speed VLSI circuits, in Proceedings of the IEEE International Symposium on Circuit and Systems, vol. I, pp. 537–540, May 1999

    Google Scholar 

  11. M. Popovich, E.G. Friedman, Decoupling capacitors for power distribution systems with multiple power supply voltages, in Proceedings of the IEEE International SOC Conference, pp. 331–334, Sept 2004

    Google Scholar 

  12. M. Popovich, E.G. Friedman, M. Sotman, A. Kolodny, R.M. Secareanu, Maximum effective distance of on-chip decoupling capacitors in power distribution grids, in Proceedings of the ACM Great Lakes Symposium on Very Large Scale Integration, pp. 173–179, Mar 2006

    Google Scholar 

  13. International Technology Roadmap for Semiconductors, 2005 edn. (Semiconductor Industry Association, 2005). http://public.itrs.net

  14. V. Kursun, E.G. Friedman, Multi-Voltage CMOS Circuit Design (Wiley, Hoboken, 2006)

    Book  Google Scholar 

  15. J.-M. Chang, M. Pedram, Energy minimization using multiple supply voltages. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 5(4), 436–443 (1997)

    Google Scholar 

  16. K. Usami, M. Igarashi, F. Minami, T. Ishikawa, M. Kanzawa, M. Ichida, K. Nogami, Automated low-power technique exploiting multiple supply voltages applied to a media processor. IEEE J. Solid-State Circuits 33(3), 463–472 (1998)

    Article  Google Scholar 

  17. K. Usami, M. Horowitz, Clustered voltage scaling technique for low-power design, in Proceedings of the IEEE International Symposium on Low Power Electronics and Design, pp. 3–8, Apr 1995

    Google Scholar 

  18. M. Igarashi, K. Usami, K. Nogami, F. Minami, Y. Kawasaki, T. Aoki, M. Takano, S. Sonoda, M. Ichida, N. Hatanaka, A low-power design method using multiple supply voltages, in Proceedings of the IEEE International Symposium on Low Power Electronics and Design, pp. 36–41, Aug 1997

    Google Scholar 

  19. J.-S. Wang, S.-J. Shieh, J.-C. Wang, C.-W. Yeh, Design of standard cells used in low-power ASIC’s exploiting the multiple-supply-voltage scheme, in Proceedings of the IEEE International ASIC Conference, pp. 119–123, Sept 1998

    Google Scholar 

  20. S. Raje, M. Sarrafzadeh, Variable voltage scheduling, in Proceedings of the ACM International Symposium on Low Power Design, pp. 9–14, Apr 1995

    Google Scholar 

  21. A.V. Mezhiba, E.G. Friedman, Impedance characteristics of power distribution grids in nanoscale integrated circuits. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 12(11), 1148–1155 (2004)

    Google Scholar 

  22. M. Popovich, E.G. Friedman, M. Sotman, A. Kolodny, On-chip power distribution grids with multiple supply voltages for high-performance integrated circuits, in Proceedings of the ACM/IEEE Great Lakes Symposium on VLSI, pp. 2–7, Apr 2005

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

P.-Vaisband, I., Jakushokas, R., Popovich, M., Mezhiba, A.V., Köse, S., Friedman, E.G. (2016). On-Chip Power Grids with Multiple Supply Voltages. In: On-Chip Power Delivery and Management. Springer, Cham. https://doi.org/10.1007/978-3-319-29395-0_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29395-0_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29393-6

  • Online ISBN: 978-3-319-29395-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics