Skip to main content

Photorefractives for Holographic Interferometry and Nondestructive Testing

  • Chapter
  • First Online:
Photorefractive Organic Materials and Applications

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 240))

  • 750 Accesses

Abstract

Thanks to its high sensitivity to displacement, holography is very well suited for metrology. In the case of holographic interferometry (HI), interference occurs between the object wavefront and a wavefront reconstructed by a hologram allowing a comparison between different objects, or different states of the same object. This chapter first discusses the importance of HI compared to other techniques such as electronic or computer based interferometry, then the author is developing various methodologies for holographic metrology, including real time, double exposure, and time averaged HI. Material considerations are covered and the specific case of photorefractive polymer and crystals are analyzed. Several experiments of nondestructive testing on industrial systems are discussed with measurement configurations relevant for thermal analysis, vibration, defect detection, and even historic artifact investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kreis, T.: Handbook of Holographic Interferometry—Optical and Digital Methods. Wiley-VCH, Weinheim (2005)

    Google Scholar 

  2. Vest, C.M.: Holographic Interferometry. Wiley, New York (1979)

    Google Scholar 

  3. Picart, P., Gross, M., Marquet, P.: Basic fundamentals of digital holography. In: Picart, P. (ed.) New Techniques in Digital Holography, pp. 1–66. Wiley/ISTE, London (2015)

    Google Scholar 

  4. Jones, R., Wykes, C.: Holographic and Speckle Interferometry, 2nd edn. Cambridge University Press, Cambridge (1989)

    Book  Google Scholar 

  5. Georges, M.: Long-wave infrared digital holography. In: Picart, P. (ed.) New Techniques in Digital Holography, pp. 219–254. Wiley/ISTE, London (2015)

    Google Scholar 

  6. Picart, P.: Holography: non-contact and optical non-destructive testing applications, In: Optics 4 Engineers, Online Courses. http://www.optique-ingenieur.org/en/courses/OPI_ang_M02_C11/co/OPI_ang_M02_C11_web.html (2009). Accessed 30 Mar 2009

  7. Nakadate, S., Saito, H., Nakajima, T.: Vibration measurement using phase-shifting stroboscopic holographic interferometry. Opt. Acta 33(10), 1295–1309 (1986)

    Article  Google Scholar 

  8. Robinson, D.W., Reid, G.T.: Interferogram Analysis: Digital Fringe Pattern Measurement Techniques. Institute of Physics, London (1993)

    Google Scholar 

  9. Frejlich, J.: Photorefractive Materials. Fundamental Concepts, Holographic Recording and Materials Characterization. Wiley, Hoboken (2007)

    Google Scholar 

  10. Kogelnik, H.: Coupled wave theory for thick hologram gratings. Bell Syst. Tech. J. 48(9), 2909–2947 (1969)

    Article  Google Scholar 

  11. Lemaire, P., Georges, M.: Dynamic holographic interferometry: devices and applications. In: Günther, P., Huignard, J.-P. (eds.) Photorefractive Materials and Their Applications 3. Applications, pp. 223–251. Springer, New York (2007)

    Google Scholar 

  12. Petrov, M., Stepanov, S., Khomenko, A.: Photorefractive crystals in coherent optical systems. In: Springer Series in Optical Sciences, vol. 59. Springer, Berlin (1991)

    Google Scholar 

  13. Delaye, P., Jonathan, J.M., Pauliat, G., Roosen, G.: Photorefractive materials: specifications relevant to applications. Pure Appl. Opt. 5, 541–559 (1996)

    Article  Google Scholar 

  14. Hafiz, A., Magnusson, R., Bagby, J., Wilson, D., Black, T.: Visualization of aerodynamic flow using photorefractive crystals. Appl. Opt. 28(8), 1521–1524 (1989)

    Article  Google Scholar 

  15. Wang, X., Magnusson, R., Haji-Sheikh, A.: Real-time interferometry with photorefractive reference holograms. Appl. Opt. 32(11), 1983–1986 (1993)

    Article  Google Scholar 

  16. Mary, J., Bernard, Y., Lefaucheux, F.: Development of a space interferometer with a LiNbO3:Fe crystal as holographic support. J. Opt. Soc. Am. B 7(12), 2356–2361 (1990)

    Article  Google Scholar 

  17. Marrakchi, A., Huignard, J.P., Günter, P.: Diffraction efficiency and energy transfer in two-wave mixing experiments with Bi12SiO20 crystals. Appl. Phys. 24, 131–138 (1991)

    Article  Google Scholar 

  18. Labrunie, L., Pauliat, G., Launay, J.C., Leidenbach, S., Roosen, G.: Real-time double exposure holographic phase shifting interferometer using a photorefractive crystal. Opt. Commun. 140, 119–127 (1997)

    Article  Google Scholar 

  19. Kamshilin, A., Petrov, M.: Continuous reconstruction of holographic interferograms through anisotropic diffraction in photorefractive crystals. Opt. Commun. 53, 23–26 (1985)

    Article  Google Scholar 

  20. Troth, R., Dainty, J.C.: Holographic interferometry using anisotropic self-diffraction in Bi12SiO20. Opt. Lett. 16, 53–55 (1991)

    Article  Google Scholar 

  21. Georges, M., Lemaire, P.: Holographic interferometry using photorefractive crystals for quantitative phase measurement on large objects. Proc. SPIE 2652, 248–257 (1996)

    Article  Google Scholar 

  22. Georges, M., Lemaire, P.: Phase-shifting real time interferometry that uses bismuth silicon oxide crystals. Appl. Opt. 34(32), 7497–7506 (1995). http://dx.doi.org/10.1364/AO.34.007497

    Article  Google Scholar 

  23. Huignard, J.P., Herriau, J.P.: Real-time double exposure interferometry with Bi12SiO20 crystals in transverse electrooptic configuration. Appl. Opt. 16(7), 1807–1809 (1977)

    Article  Google Scholar 

  24. Huignard, J.P., Herriau, J.P., Valentin, T.: Time average holographic interferometry with photoconductive electrooptic Bi12SiO20 crystals. Appl. Opt. 16(11), 2796–2798 (1977)

    Article  Google Scholar 

  25. Marrakchi, A., Huignard, J.P., Herriau, J.P.: Application of phase conjugation in Bi12SiO20 crystals to mode pattern visualization of diffuse vibrating structures. Opt. Commun. 34, 15–18 (1980)

    Article  Google Scholar 

  26. Huignard, J.P., Marrakchi, A.: Two-wave mixing and energy transfer in Bi12SiO20 crystals: application to image amplification and vibration analysis. Opt. Lett. 6, 622–624 (1981)

    Article  Google Scholar 

  27. Kamshilin, A., Mokrushina, E., Petrov, M.: Adaptative holographic interferometers operating through self-diffraction of recording beams in photorefractive crystals. Opt. Eng. 28(6), 580–585 (1989)

    Article  Google Scholar 

  28. Dirksen, D., von Bally, G.: Holographic double exposure interferometry in near real time with photorefractive crystals. J. Opt. Soc. Am. B 11(9), 1858–1863 (1994)

    Article  Google Scholar 

  29. Rickermann, F., Riehemann, S., von Bally, G.: Utilization of photorefractive crystals for holographic double exposure interferometry with nanosecond laser pulses. Opt. Commun. 155, 91–98 (1998)

    Article  Google Scholar 

  30. Dirksen, D., Matthes, F., Riehemann, S., von Bally, G.: Phase shifting holographic double exposure interferometry with fast photorefractive crystals. Opt. Commun. 134, 310–316 (1997)

    Article  Google Scholar 

  31. Pouet, B., Krishnaswamy, S.: Dynamic holographic interferometry by photorefractive crystals for quantitative deformation measurements. Appl. Opt. 35(5), 787–794 (1996)

    Article  Google Scholar 

  32. Labrunie, L., Pauliat, G., Roosen, G., Launay, J.C.: Simultaneous acquisition of π/2 phase-stepped interferograms with a photorefractive Bi12GeO20 crystal: application to real-time double-pulse holography. Opt. Lett. 20(15), 1652–1654 (1995)

    Article  Google Scholar 

  33. Neumann, D.B., Rose, H.W.: Improvement of recorded holographic fringes by feedback control. Appl. Opt. 6(6), 1097–1104 (1967)

    Article  Google Scholar 

  34. Kamshilin, A., Frejlich, J., Cescato, L.: Photorefractive crystals for the stabilization of the holographic setup. Appl. Opt. 25(14), 2375–2381 (1986)

    Article  Google Scholar 

  35. Dos Santos, P.A., Cescato, L., Frejlich, J.: Interference-term real-time measurement for self-stabilized two-wave mixing in photorefractive crystals. Opt. Lett. 13(11), 1014–1016 (1988)

    Article  Google Scholar 

  36. Freschi, A., Frejlich, J.: Adjustable phase control in stabilized interferometry. Opt. Lett. 20(6), 635–637 (1995)

    Article  Google Scholar 

  37. Freschi, A., Barbosa, E., Frejlich, J.: Phase-compensated holographic recording based on anisotropic photorefractive diffraction. Opt. Lett. 20(19), 2027–2029 (1995)

    Article  Google Scholar 

  38. Hampp, N., Bräuchle, C., Oesterhelt, D.: Bacterioshodopsin wildtype and variants aspartate-96 asparagine as reversible holographic media. Biophys. J. 58, 83–93 (1990)

    Article  Google Scholar 

  39. Renner, T., Hampp, N.: Bacteriorhodopsin-films for dynamic time average interferometry. Opt. Commun. 96, 142–149 (1993)

    Article  Google Scholar 

  40. Barnhart, D., Koek, W., Juchem, T., Hampp, N., Coupland, J., Halliwell, N.: Bacterioshodopsin as a high-resolution, high-capacity buffer for digital holographic measurements. Meas. Sci. Technol. 15, 639–646 (2004)

    Article  Google Scholar 

  41. Hampp, N., Juchem, T.: System for holographic interferometry based on bacteriorhodopsin-films. Proc SPIE 4597, 7–15 (2001)

    Article  Google Scholar 

  42. Volodin, B., Sandalphon, Meerholz, K., Kippelen, B., Kukhtarev, N., Peyghambarian, N.: Highly efficient photorefractive polymers for dynamic holography. Opt. Eng. 34(8), 2213–2223 (1995)

    Article  Google Scholar 

  43. Georges, M., Lemaire, P.: Holographic interferometry using photorefractive crystals: recent advances and applications. Proc. SPIE 2782, 476–485 (1996)

    Article  Google Scholar 

  44. Georges, M., Lemaire, P.: Real-time holographic interferometry using sillenite photorefractive crystals. Study and optimization of a transportable set-up for quantified phase measurements on large objects. Appl. Phys. B 68, 1073–1083 (1999)

    Article  Google Scholar 

  45. Georges, M., Scauflaire, V., Lemaire, P.: Compact and portable holographic camera using photorefractive crystals. Applications in various metrological problems. Appl. Phys. B 72, 761–765 (2001). doi:10.1007/s003400100582

    Article  Google Scholar 

  46. Georges, M., Scauflaire, V., Lemaire, P.: Compact and portable holographic camera based on photorefractive crystals and application in interferometry. Opt. Mater. 18, 49–52 (2001)

    Article  Google Scholar 

  47. Georges, M., Lemaire, P.: Real-time stroboscopic holographic interferometry using sillenite crystals for the quantitative analysis of vibrations. Opt. Commun. 145, 249–257 (1998)

    Article  Google Scholar 

  48. Georges, M., Thizy, C., Scauflaire, V., Ryhon, S., Pauliat, G., Lemaire, P., Roosen, G.: Holographic interferometry with photorefractive crystals: review of applications and advances techniques. Proc. SPIE 4933, 250–255 (2003)

    Article  Google Scholar 

  49. Thizy, C., Georges, M., Lemaire, P., Stockman, Y., Doyle, D.: Phase control strategies for stabilization of photorefractive holographic interferometer. Proc. SPIE 6341, 63411O (2006)

    Article  Google Scholar 

  50. Thizy, C., Georges, M., Doulgeridis, M., Kouloumpi, E., Green, T., Hackney, S., Tornari, V.: Role of dynamic holography with photorefractive crystals in a multifunctional sensor for the detection of signature features in movable cultural heritage. Proc. SPIE 6618, 661828 (2007)

    Google Scholar 

  51. Georges, M., Thizy, C., Tiberghien, J., Lemaire, P.: Adaptation of a photorefractive holographic interferometer for analysis of centimetric to micrometric objects. Proc. SPIE 6341, 634139 (2006)

    Article  Google Scholar 

  52. Georges, M., Thizy, C.: Photorefractive holographic camera for monitoring deformation of MEMS. J. Micro/Nanolithogr. MEMS MOEMS 14(4), 041301 (2015)

    Article  Google Scholar 

  53. Thizy, C., Eliot, F., Ballhause, D., Olympio, K.R., Kluge, R., Shannon, A., Laduree, G., Logut, D., Georges, M.: Holographic interferometry based on photorefractive crystal to measure 3D thermo-elastic distortion of composite structures and comparison with finite element models. Proc. SPIE 8788, 878807 (2013)

    Article  Google Scholar 

  54. Lynn, B., Blanche, P.A., Peyghambarian, N.: Photorefractive polymers for holography. J. Polym. Sci. B Polym. Phys. 52, 193–231 (2014)

    Article  Google Scholar 

  55. Blanche, P.A., Bablumian, A., Voorakaranam, R., Christenson, C., Lin, W., Gu, T., Flores, D., Wang, P., Hsieh, W.Y., Kathaperumal, M., Rachwal, B., Siddiqui, O., Thomas, J., Norwood, R., Yamamoto, M., Peyghambarian, N.: Holographic three-dimensional telepresence using large-area photorefractive polymer. Nature 468, 80–83 (2010)

    Article  Google Scholar 

  56. Tsutsuni, N., Kinashi, K., Nonomura, A.: Quickly updatable hologram images using poly(N-vinyl carbazole) (PVCz) photorefractive polymer composite. Materials 5, 1477–1486 (2012)

    Article  Google Scholar 

  57. Tsujimura, S., Kinashi, K., Sakai, W., Tsutsumi, N.: High-speed photorefractive response capability in Triphenylamine polymer-based composites. Appl. Phys. Express 5, 064101 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Georges .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Georges, M. (2016). Photorefractives for Holographic Interferometry and Nondestructive Testing. In: Blanche, PA. (eds) Photorefractive Organic Materials and Applications. Springer Series in Materials Science, vol 240. Springer, Cham. https://doi.org/10.1007/978-3-319-29334-9_8

Download citation

Publish with us

Policies and ethics