Skip to main content

Inorganic–Organic Photorefractive Hybrids

  • Chapter
  • First Online:
Photorefractive Organic Materials and Applications

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 240))

Abstract

Organic hybrids, comprising polymers and liquid crystals, have been explored for photorefractive beam coupling and diffractive applications for almost two decades. The work presented in this chapter explores an alternative approach of using inorganic–organic hybrids, comprising space-charge field generating inorganic crystals as windows for liquid crystal cells. The primary advantages of the inorganic–organic hybrid approach, such as the ability to produce high-resolution gratings, are discussed. Experiments conducted to gain a fundamental understanding of the physical mechanisms leading to beam coupling with this technology are described in detail, as well as methods used to increase the gain coefficient of the devices; these methods include increasing the contribution from the flexoelectric effect and the incorporation of ferroelectric nanoparticles. A discussion on the ferroelectric nanoparticles themselves is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grabar, A., Kedyk, I., Gurzan, M., Stoika, I., Molnar, A., Vysochanskii, Y.M.: Enhanced photorefractive properties of modified Sn2P2S6. Opt. Commun. 188, 187 (2001)

    Article  Google Scholar 

  2. Cook, G., Carns, J.L., Saleh, M.A., Evans, D.R.: Anisotropy of nonlinear coupling of two counter-propagating waves in photorefractive Fe:KNbO3. Phys. Rev. B 73, 174102 (2006)

    Article  Google Scholar 

  3. Cook, G., Finnan, C.J., Jones, D.C.: High optical gain using counterpropagating beams in iron and terbium-doped photorefractive lithium niobate. Appl. Phys. B 68, 911 (1999)

    Article  Google Scholar 

  4. Evans, D., Cook, G.: Bragg-matched photorefractive two-beam coupling in organic–inorganic hybrids. J. Nonlinear Opt. Phys. Mater. 16, 271 (2007)

    Article  Google Scholar 

  5. Brignon, A., Bongrand, I., Loiseaux, B., Huignard, J.P.: Signal-beam amplification by two-wave mixing in a liquid-crystal light valve. Opt. Lett. 22, 1855 (1997)

    Article  Google Scholar 

  6. Kajzar, F., Bartkiewicz, S., Miniewicz, A.: Optical amplification with high gain in hybrid-polymer–liquid-crystal structures. Appl. Phys. Lett. 74, 2924 (1999)

    Article  Google Scholar 

  7. Bartkiewicz, S., Matczyszyn, K., Miniewicz, A., Kajzar, F.: High gain of light in photoconducting polymer–nematic liquid crystal hybrid structures. Opt. Commun. 187, 257 (2001)

    Article  Google Scholar 

  8. Tabiryan, N.V., Umeton, C.: Surface-activated photorefractivity and electro-optic phenomena in liquid crystals. J. Opt. Soc. Am. B 15, 1912 (1998)

    Article  Google Scholar 

  9. Cook, G., Wyres, C.A., Deer, M.J., Jones, D.C.: Hybrid organic-inorganic photorefractives. Proc. SPIE 5213, 63 (2003)

    Article  Google Scholar 

  10. Jones, D., Cook, G.: Theory of beam coupling in a hybrid photorefractive-liquid crystal cell. Opt. Commun. 232, 399 (2004)

    Article  Google Scholar 

  11. Cook, G., Glushchenko, A., Reshetnyak, V., Griffith, A., Saleh, M., Evans, D.: Nanoparticle doped organic-inorganic hybrid photorefractives. Opt. Exp. 16, 4015 (2008)

    Article  Google Scholar 

  12. Anczykowska, A., Bartkiewicz, S., Nyk, M., Myśliwiec, J.: Enhanced photorefractive effect in liquid crystal structures co-doped with semiconductor quantum dots and metallic nanoparticles. Appl. Phys. Lett. 99, 191109 (2011)

    Article  Google Scholar 

  13. Acreman, A., Kaczmarek, M., D’Alessandro, G.: Gold nanoparticle liquid crystal composites as a tunable nonlinear medium. Phys. Rev. E 90, 012504 (2014)

    Article  Google Scholar 

  14. Reshetnyak, V.Y., Pinkevych, I., Cook, G., Evans, D., Sluckin, T.: Two-beam energy exchange in a hybrid photorefractive inorganic-cholesteric cell. Mol. Cryst. Liq. Cryst. 560, 8 (2012)

    Article  Google Scholar 

  15. Tong, X.C.: Advanced Materials for Integrated Optical Waveguides, p. 93. Springer, Heidelberg (2014)

    Book  Google Scholar 

  16. Evans, D.R., Cook, G.: Nonlinear optics: research continues to advance photorefractive beam coupling. Laser Focus World 41, 67 (2005)

    Google Scholar 

  17. Evans, D., Cook, G., Carns, J.: Holographic and nonholographic organic–inorganic hybrids. Mol. Cryst. Liq. Cryst. 488, 190–201 (2008)

    Article  Google Scholar 

  18. Cook, G., Carns, J., Saleh, M., Evans, D.: Substrate induced pre-tilt in hybrid liquid crystal/inorganic photorefractives. Mol. Cryst. Liq. Cryst. 453, 141 (2006)

    Article  Google Scholar 

  19. Rudquist, P., Lagerwall, S.: On the flexoelectric effect in nematics. Liq. Cryst. 23, 503 (1997)

    Article  Google Scholar 

  20. Baur, G., Wittwer, V., Berreman, D.: Determination of the tilt angles at surfaces of substrates in liquid crystal cells. Phys. Lett. A 56, 142 (1976)

    Article  Google Scholar 

  21. Sutherland, R.L., Cook, G., Evans, D.R.: Determination of large nematic pre-tilt in liquid crystal cells with mechanically rubbed photorefractive Ce: SBN windows. Opt. Exp. 14, 5365 (2006)

    Article  Google Scholar 

  22. Wingbermühle, J., Meyer, M., Schirmer, O., Pankrath, R., Kremer, R.: Electron paramagnetic resonance of Ce3+ in strontium-barium niobate. J. Phys. Condens. Matter 12, 4277 (2000)

    Article  Google Scholar 

  23. Reshetnyak, V.Y., Pinkevych, I.P., Cook, G., Evans, D.R., Sluckin, T.J.: Two-beam energy exchange in a hybrid photorefractive-flexoelectric liquid-crystal cell. Phys. Rev. E 81, 031705 (2010)

    Article  Google Scholar 

  24. de Gennes, P.G., Prost, J.: The Physics of Liquid Crystals, p. 136. Oxford University Press, Oxford (1995)

    Google Scholar 

  25. Buka, A., Eber, N.: Flexoelectricity in Liquid Crystals: Theory, Experiments and Applications, p. 300. World Scientific, Singapore (2012)

    Book  Google Scholar 

  26. Herrington, M.: Electrical and Optical Effects in Hybrid Liquid Crystal Cells. University of Southampton, Southampton (2011)

    Google Scholar 

  27. Klein, W., Cook, B.D.: Unified approach to ultrasonic light diffraction. IEEE Trans. Sonics Ultrason. 14, 123 (1967)

    Article  Google Scholar 

  28. Moharam, M., Young, L.: Criterion for Bragg and Raman-Nath diffraction regimes. Appl. Opt. 17, 1757 (1978)

    Article  Google Scholar 

  29. Crocker, M.J.: Handbook of Acoustics. Wiley, New York (1998)

    Google Scholar 

  30. Roosen, G., Agulló-López, F., Schirmer, O.: Proceedings of Symposium C on Photorefractive materials: growth and doping, optical and electrical characterizations, charge transfer processes and space charge field effects, applications of the 1994 E-MRS Spring Conference (1995)

    Google Scholar 

  31. Reeves, R.J., Jani, M.G., Jassemnejad, B., Powell, R.C., Mizell, G.J., Fay, W.: Photorefractive properties of KNbO3. Phys. Rev. B 43, 71 (1991)

    Article  Google Scholar 

  32. Cook, G., Duignan, J., Jones, D.: Photovoltaic contribution to counter-propagating two-beam coupling in photorefractive lithium niobate. Opt. Commun. 192, 393 (2001)

    Article  Google Scholar 

  33. Gvozdovskyy, I., Shcherbin, K., Evans, D., Cook, G.: Infrared sensitive liquid crystal photorefractive hybrid cell with semiconductor substrates. Appl. Phys. B 104, 883 (2011)

    Article  Google Scholar 

  34. Garcia, R.R., Berrospe-Rodriguez, C.: Enhancement of the coupling gain in GaAs-liquid crystal hybrid devices. Mol. Cryst. Liq. Cryst. 561, 68 (2012)

    Article  Google Scholar 

  35. Private communication, Dean Evans, Gary Cook, and R. L. Sutherland (2015)

    Google Scholar 

  36. Reshetnyak, V.Y., Pinkevych, I., Sluckin, T., Cook, G., Evans, D.: Beam coupling in hybrid photorefractive inorganic-cholesteric liquid crystal cells: impact of optical rotation. J. Appl. Phys. 115, 103103 (2014)

    Article  Google Scholar 

  37. Chigrinov, V.: Liquid crystal devices: physics and applications. ASID’04 tutorial notes (2004)

    Google Scholar 

  38. Reznikov, Y., Buchnev, O., Tereshchenko, O., Reshetnyak, V., Glushchenko, A., West, J.: Ferroelectric nematic suspension. Appl. Phys. Lett. 82, 1917 (2003)

    Article  Google Scholar 

  39. Li, F., Buchnev, O., Cheon, C.I., Glushchenko, A., Reshetnyak, V., Reznikov, Y., Sluckin, T.J., West, J.L.: Orientational coupling amplification in ferroelectric nematic colloids. Phys. Rev. Lett. 97, 147801 (2006)

    Article  Google Scholar 

  40. Mikułko, A., Arora, P., Glushchenko, A., Lapanik, A., Haase, W.: Complementary studies of BaTiO3 nanoparticles suspended in a ferroelectric liquid-crystalline mixture. Europhys. Lett. 87, 27009 (2009)

    Article  Google Scholar 

  41. Cook, G., Reshetnyak, V.Y., Ziolo, R., Basun, S., Banerjee, P., Evans, D.: Asymmetric Freedericksz transitions from symmetric liquid crystal cells doped with harvested ferroelectric nanoparticles. Opt. Exp. 18, 17339 (2010)

    Article  Google Scholar 

  42. Buchnev, O., Dyadyusha, A., Kaczmarek, M., Reshetnyak, V., Reznikov, Y.: Enhanced two-beam coupling in colloids of ferroelectric nanoparticles in liquid crystals. J. Opt. Soc. Am. B 24, 1512 (2007)

    Article  Google Scholar 

  43. Shukla, R., Liebig, C., Evans, D., Haase, W.: Electro-optical behaviour and dielectric dynamics of harvested ferroelectric LiNbO3 nanoparticle-doped ferroelectric liquid crystal nanocolloids. RCS Adv. 4, 18529 (2014)

    Google Scholar 

  44. Basu, R., Garvey, A.: Effects of ferroelectric nanoparticles on ion transport in a liquid crystal. Appl. Phys. Lett. 105, 151905 (2014)

    Article  Google Scholar 

  45. Beh, E.S.: Interfacial Polarization Effects on Molecular Catalysis. Stanford University, Stanford (2015)

    Google Scholar 

  46. Basun, S., Cook, G., Reshetnyak, V.Y., Glushchenko, A., Evans, D.: Dipole moment and spontaneous polarization of ferroelectric nanoparticles in a nonpolar fluid suspension. Phys. Rev. B 84, 024105 (2011)

    Article  Google Scholar 

  47. Atkuri, H., Cook, G., Evans, D., Cheon, C., Glushchenko, A., Reshetnyak, V., Reznikov, Y., West, J., Zhang, K.: Preparation of ferroelectric nanoparticles for their use in liquid crystalline colloids. J. Opt. A Pure Appl. Opt. 11, 024006 (2009)

    Article  Google Scholar 

  48. Zhao, Z., Buscaglia, V., Viviani, M., Buscaglia, M.T., Mitoseriu, L., Testino, A., Nygren, M., Johnsson, M., Nanni, P.: Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics. Phys. Rev. B 70, 024107 (2004)

    Article  Google Scholar 

  49. Cook, G., Barnes, J., Basun, S., Evans, D., Ziolo, R., Ponce, A., Reshetnyak, V.Y., Glushchenko, A., Banerjee, P.: Harvesting single ferroelectric domain stressed nanoparticles for optical and ferroic applications. J. Appl. Phys. 108, 064309 (2010)

    Article  Google Scholar 

  50. Morozovska, A.N., Glinchuk, M.D., Eliseev, E.A.: Phase transitions induced by confinement of ferroic nanoparticles. Phys. Rev. B 76, 014102 (2007)

    Article  Google Scholar 

  51. Evans, D., Basun, S., Cook, G., Pinkevych, I., Reshetnyak, V.Y.: Electric field interactions and aggregation dynamics of ferroelectric nanoparticles in isotropic fluid suspensions. Phys. Rev. B 84, 174111 (2011)

    Article  Google Scholar 

  52. Choi, K.J., Biegalski, M., Li, Y., Sharan, A., Schubert, J., Uecker, R., Reiche, P., Chen, Y., Pan, X., Gopalan, V.: Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306, 1005 (2004)

    Article  Google Scholar 

  53. Ederer, C., Spaldin, N.A.: Effect of epitaxial strain on the spontaneous polarization of thin film ferroelectrics. Phys. Rev. Lett. 95, 257601 (2005)

    Article  Google Scholar 

  54. Liquid Crystals Beyond Displays: Chemistry, Physics, and Applications, Editor Quan Li, Chapter 12 Ferroelectric Colloids in Liquid Crystals, Yu. Reznikov, Wiley 2012

    Google Scholar 

  55. Zembilgotov, A., Pertsev, N., Kohlstedt, H., Waser, R.: Ultrathin epitaxial ferroelectric films grown on compressive substrates: competition between the surface and strain effects. J. Appl. Phys. 91, 2247 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Evans, D.R., Cook, G., Reshetnyak, V.Y., Liebig, C.M., Basun, S.A., Banerjee, P.P. (2016). Inorganic–Organic Photorefractive Hybrids. In: Blanche, PA. (eds) Photorefractive Organic Materials and Applications. Springer Series in Materials Science, vol 240. Springer, Cham. https://doi.org/10.1007/978-3-319-29334-9_6

Download citation

Publish with us

Policies and ethics