Skip to main content

Introduction to the Photorefractive Effect in Polymers

  • Chapter
  • First Online:
Photorefractive Organic Materials and Applications

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 240))

Abstract

After a brief historical introduction about photorefractive materials, this chapter provides an extensive overview of the mathematical modeling of the photorefractive effect in organic compounds. The theories of charge photo-generation, transport and trapping, as well as chromophore orientation in the space-charge field are detailed. We then discuss the different molecular species providing the respective functionalities to the PR effect: electroconductive matrices, nonlinear chromophores, photo-sensitizers, and plasticizers, along with the recent developments in the search for more effective materials. Several electrode geometries for different types of devices are described before a section on material characterization. This later include measurement techniques of the molecular properties such as energy levels, photoconduction, and index change, followed by the holographic setups such as four-wave mixing and two-beam coupling, along with the theory to extract the important parameters out of the measured quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashkin, A., Boyd, G., Dziedzic, J.: Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3. Appl. Phys. 9(1), 5–7 (1966)

    Google Scholar 

  2. Chen, F.S.: A laser-induced inhomogeneity of refractive indices in KTN. J. Appl. Phys. 38(8), 3418–3420 (1967)

    Article  Google Scholar 

  3. Chen, F.S., Lamacchia, J.T., Fraser, D.B.: Holographic storage in lithium niobate. Appl. Phys. Lett. 13(7), 223–225 (1968)

    Article  Google Scholar 

  4. Thaxter, J.B.: Electrical control of holographic storage in strontium-barium niobate. Appl. Phys. Lett 15(7), 210 (1969)

    Article  Google Scholar 

  5. White, J.O., Yariv, A.: Real-time image processing via four-wave mixing in a photorefractive medium. Appl. Phys. Lett. 37(1), 5–7 (1980)

    Article  Google Scholar 

  6. Huignard, J.P., Herriau, J.P., Aubourg, P., Spitz, E.: Phase-conjugate wavefront generation via real-time holography in Bi12SiO20 crystals. Opt. Lett. 4(1), 21 (1979)

    Article  Google Scholar 

  7. Pichon, J.P.H.L.: Dynamic joint-fourier-transform correlator by bragg diffraction in photorefractive Bi12SiO20 crystals. Opt. Commun. 36(4), 277–280 (1981)

    Article  Google Scholar 

  8. Ketchel, B.P., Heid, C.A., Wood, G.L., Miller, M.J., Mott, A.G., Anderson, R.J., Salamo, G.J.: Three-dimensional color holographic display. Appl. Opt. 38(29), 6159 (1999)

    Article  Google Scholar 

  9. Günter, P., Huignard, J.-P.: Photorefractive Material and Their Applications 1: Basic Effects. Springer, New York (2006)

    Book  Google Scholar 

  10. Yeh, P.: Introduction to Photorefractive Nonlinear Optics. Wiley Interscience, New York (1993)

    Google Scholar 

  11. Sutter, K., Hullinger, J., Günter, P.: Photorefractive effects observed in the organic crystal 2-cyclooctylamino-5-nitropyridine doped with 7,7,8,8-tetracyanoquinodimethane. Opt. Commun. 74(8), 867–870 (1990)

    Google Scholar 

  12. Ducharme, S., Scott, J., Twieg, R., Moerner, W.: Observation of the photorefractive effect in a polymer. Phys. Rev. Lett. 66(14), 1846 (1991)

    Article  Google Scholar 

  13. Meerholz, K., Volodin, B., Sandalphon, Kippelen, B., Peyghambarian, N.: A photorefractive polymer with high optical gain and diffraction efficiency near 100%. Nature 371, 497 (1994)

    Article  Google Scholar 

  14. Eralp, M., Thomas, J., Tay, S., Li, G., Schulzgen, A., Norwood, R.A., Yamamoto, M., Peyghambarian, N.: Submillisecond response of a photorefractive polymer under single nanosecond pulse exposure. Appl. Phys. Lett. 89(11), 114105 (2006)

    Article  Google Scholar 

  15. Blanche, P.-A., Bablumian, A., Voorakaranam, R., Christenson, C., Lin, W., Gu, T., Flores, D., Wang, P., Hsieh, W.-Y., Kathaperumal, M., Rachwal, B., Siddiqui, O., Thomas, J., Norwood, R.A., Yamamoto, M., Peyghambarian, N.: Holographic three-dimensional telepresence using large-area photorefractive polymer. Nature 468(7320), 80–83 (2010)

    Article  Google Scholar 

  16. Moerner, W.E., Silence, S.M., Hache, F., Bjorklund, G.C.: Orientationally enhanced photorefractive effect in polymers. J. Opt. Soc. Am. B 11(2), 320 (1994)

    Article  Google Scholar 

  17. Malliaras, G.G., Krasnikov, V.V., Bolink, H.J., Hadziioannou, G.: Control of charge trapping in a photorefractive polymer. Appl. Phys. Lett. 66(9), 1038 (1995)

    Article  Google Scholar 

  18. Eralp, M., Thomas, J., Tay, S., Li, G., Meredith, G., Schulzgen, A., Peyghambarian, N., Walker, G.A., Barlow, S., Marder, S.R.: High-performance photorefractive polymer operating at 975 nm. Appl. Phys. Lett. 85(7), 1095 (2004)

    Article  Google Scholar 

  19. Eralp, M., Thomas, J., Li, G., Tay, S., Schülzgen, A., Norwood, R.A., Peyghambarian, N., Yamamoto, M.: Photorefractive polymer device with video-rate response time operating at low voltages. Opt. Lett. 31(10), 1408 (2006)

    Article  Google Scholar 

  20. Maldonado, J.L., Ramos-Ortíz, G., Miranda, M.L., Vázquez-Córdova, S., Meneses-Nava, M.A., Barbosa-García, O., Ortíz-Gutiérrez, M.: Two examples of organic opto-electronic devices: light emitting diodes and solar cells. Am. J. Phys. 76(12), 1130 (2008)

    Article  Google Scholar 

  21. Onsager, L.: Initial recombination of ions. Phys. Rev. 54(8), 554–557 (1938)

    Article  Google Scholar 

  22. Mozumder, A.: Effect of an external electric field on the yield of free ions: general results from the Onsager theory. J. Chem. Phys. 60(11), 9–13 (1974)

    Google Scholar 

  23. Noolandi, J., Hong, K.M.: Theory of photogeneration and fluorescence quenching. J. Chem. Phys 70(7), 3230 (1979)

    Article  Google Scholar 

  24. Ostroverkhova, O., Moerner, W.E.: Organic photorefractives: mechanisms, materials, and applications. Chem. Rev. 104(7), 3267–3314 (2004)

    Article  Google Scholar 

  25. Merski, J.: Piezomodulation spectroscopy of molecular crystals. IV. The first singlet systems of TCNQ and BDP. J. Chem. Phys 75(8), 3731 (1981)

    Article  Google Scholar 

  26. Howard, I.A., Laquai, F., Keivanidis, P.E., Friend, R.H., Greenham, N.C.: Perylene tetracarboxydiimide as an electron acceptor in organic solar cells: a study of charge generation and recombination. J. Phys. Chem. C 113, 21225–21232 (2009)

    Article  Google Scholar 

  27. Gehrig, D.W., Howard, I.A., Kamm, V., Mangold, H., Neher, D.: Efficiency-limiting processes in low-bandgap polymer: perylene diimide photovoltaic blends. J. Phys. Chem. 118(35), 20077–20085 (2014)

    Google Scholar 

  28. Clarke, T.M., Durrant, J.R.: Charge photogeneration in organic solar cells tracey. Chem. Rev. 110, 6736–6767 (2010)

    Article  Google Scholar 

  29. Moharam, M.G., Young, L.: Hologram writing by the photorefractive effect. J. Appl. Phys. 48(8), 3230–3236 (1977)

    Article  Google Scholar 

  30. Moharam, M.G., Gaylord, T.K., Magnusson, R., Young, L.: Holographic grating formation in photorefractive crystals with arbitrary electron transport lengths. J. Appl. Phys. 50(9), 5642–5651 (1979)

    Article  Google Scholar 

  31. Kukhtarev, N., Markov, V., Odulov, S.: Transient energy transfer during hologram formation in LiNbO3 in external electric field. Opt. Commun. 23(3), 338–343 (1977)

    Article  Google Scholar 

  32. Kukhtarev, N.V., Markov, V.B., Odulov, S.G., Soskin, M.S., Vinetskii, V.L.: Holographic storage in electrooptic crystals. I. Steady state. Ferroelectrics 22, 949–960 (1979)

    Article  Google Scholar 

  33. Schildkraut, J.S., Buettner, A.V.: Theory and simulation of the formation and erasure of space-charge gratings in photoconductive polymers. J. Appl. Phys. 72(5), 1888–1893 (1992)

    Article  Google Scholar 

  34. Schildkraut, J.S., Cui, Y.: Zero-order and first-order theory of the formation of space-charge gratings in photoconductive polymers. J. Appl. Phys. 72(11), 5055–5060 (1992)

    Article  Google Scholar 

  35. Ostroverkhova, O., Singer, K.D.: Space-charge dynamics in photorefractive polymers. J. Appl. Phys. 92(4), 1727–1743 (2002)

    Article  Google Scholar 

  36. Oh, J.W., Lee, C., Kim, N.: Influence of chromophore content on the steady-state space charge formation of poly[methyl-3-(9-carbazolyl) propylsiloxane]-based polymeric photorefractive composites. J. Appl. Phys. 104(7) (2008)

    Google Scholar 

  37. Tsutsumi, N., Shimizu, Y.: Asymmetric two-beam coupling with high optical gain and high beam diffraction in external-electric-field-free polymer composites. Jpn. J. Appl. Phys. 43(6A), 3466–3472 (2004)

    Article  Google Scholar 

  38. Tanaka, A., Nishide, J., Sasabe, H.: Asymmetric energy transfer in photorefractive polymer composites under non-electric field. Mol. Cryst. Liq. Cryst. 504(1), 44–51 (2009)

    Article  Google Scholar 

  39. Gallego-Gómez, F., del Monte, F., Meerholz, K.: Optical gain by a simple photoisomerization process. Nat. Mater. 7(6), 490–497 (2008)

    Article  Google Scholar 

  40. Jakob, T., Schloter, S., Hofmann, U., Grasruck, M., Schreiber, A., Haarer, D.: Influence of the dispersivity of charge transport on the holographic properties of organic photorefractive materials. J. Chem. Phys. 111(23), 10633–10639 (1999)

    Article  Google Scholar 

  41. Zilker, S., Grasruck, M., Wolff, J., Schloter, S., Leopold, A., Kol’chenko, M., Hofmann, U., Schreiber, A., Strohriegl, P., Hohle, C., Haarer, D.: Characterization of charge generation and transport in a photorefractive organic glass: comparison between conventional and holographic time-of-flight experiments. Chem. Phys. Lett. 306(5–6), 285–290 (1999)

    Article  Google Scholar 

  42. Kulikovsky, L., Neher, D., Mecher, E., Meerholz, K., Hörhold, H.-H., Ostroverkhova, O.: Photocurrent dynamics in a poly(phenylene vinylene)-based photorefractive composite. Phys. Rev. B 69(12), 29–31 (2004)

    Article  Google Scholar 

  43. Oh, J.W., Lee, C., Kim, N.: The effect of trap density on the space charge formation in polymeric photorefractive composites. J. Chem. Phys 130(13), 134909 (2009)

    Article  Google Scholar 

  44. Thomas, J., Fuentes-Hernandez, C., Yamamoto, M., Cammack, K., Matsumoto, K., Walker, G.A., Barlow, S., Kippelen, B., Meredith, G., Marder, S.R., Peyghambarian, N.: Bistriarylamine polymer-based composites for photorefractive applications. Adv. Mater. 16(22), 2032–2036 (2004)

    Article  Google Scholar 

  45. Wang, L., Ng, M.-K., Yu, L.: Photorefraction and complementary grating competition in bipolar transport molecular material. Phys. Rev. B 62(8), 4973–4984 (2000)

    Article  Google Scholar 

  46. Christenson, C.W., Thomas, J., Blanche, P.-A., Voorakaranam, R., Norwood, R.A., Yamamoto, M., Peyghambarian, N.: Grating dynamics in a photorefractive polymer with Alq(3) electron traps. Opt. Express 18(9), 9358–9365 (2010)

    Article  Google Scholar 

  47. Liebig, C.M., Buller, S.H., Banerjee, P.P., Basun, S.A., Blanche, P.-A., Thomas, J., Christenson, C.W., Peyghambarian, N., Evans, D.R.: Achieving enhanced gain in photorefractive polymers by eliminating electron contributions using large bias fields. Opt. Express 21(25), 30392–30400 (2013)

    Article  Google Scholar 

  48. West, D., Binks, D.J.: Physics of Photorefraction in Polymers. CRC Press, Boca Raton (2005)

    Google Scholar 

  49. Burland, D.M., Miller, R.D., Walsh, C.A.: Second-order nonlinearity in poled-polymer systems. Chem. Rev. 94, 31–75 (1994)

    Article  Google Scholar 

  50. Lagendijk, A., Nienhuis, B., van Tiggelen, B., de Vries, P.: Microscopic approach to the lorentz cavity in dielectrics. Phys. Rev. Lett. 79(4), 657–660 (1997)

    Article  Google Scholar 

  51. Wortmann, R., Bishop, D.M.: Effective polarizabilities and local field corrections for nonlinear optical experiments in condensed media. J. Chem. Phys. 108(3), 1001–1007 (1998)

    Article  Google Scholar 

  52. Kippelen, B., Meyers, F., Peyghambarian, N., Marder, S.R.: Chromophore design for photorefractive applications. J. Am. Chem. Soc. 119(19), 4559–4560 (1997)

    Article  Google Scholar 

  53. Kogelnik, H.: Coupled wave theory for thick hologram gratings. Bell Syst. Tech. J. 48(9), 2909–2947 (1969)

    Article  Google Scholar 

  54. Tay, S., Blanche, P.-A., Voorakaranam, R., Tunç, A.V., Lin, W., Rokutanda, S., Gu, T., Flores, D., Wang, P., Li, G., St Hilaire, P., Thomas, J., Norwood, R.A., Yamamoto, M., Peyghambarian, N.: An updatable holographic three-dimensional display. Nature 451(7179), 694–698 (2008)

    Article  Google Scholar 

  55. Cheben, P., Del Monte, F., Worsfold, D.: A photorefractive organically modified silica glass with high optical gain. Nature 408, 64–67 (2000)

    Article  Google Scholar 

  56. Ostroverkhova, O., Gubler, U., Wright, D., He, M., Twieg, R.J., Moerner, W.E.: High-performance photorefractive organic glasses: understanding mechanisms and limitations. Spie 7, 4802 (2002)

    Google Scholar 

  57. Wiederrecht, G.: Photorefractive liquid crystals. Annu. Rev. Mater. Res. 31, 139 (2001)

    Article  Google Scholar 

  58. Talarico, M., Golemme, A.: Optical control of orientational bistability in photorefractive liquid crystals. Nat. Mater. 5(3), 185–188 (2006)

    Article  Google Scholar 

  59. Kajzar, F., Bartkiewicz, S., Miniewicz, A.: Optical amplification with high gain in hybrid-polymer–liquid-crystal structures. Appl. Phys. Lett. 74(20), 2924–2926 (2009)

    Article  Google Scholar 

  60. Jones, D.C., Cook, G.: Theory of beam coupling in a hybrid photorefractive-liquid crystal cell. Opt. Commun. 232(1–6), 399–409 (2004)

    Article  Google Scholar 

  61. Brignon, A., Bongrand, I., Loiseaux, B., Huignard, J.P.: Signal-beam amplification by two-wave mixing in a liquid-crystal light valve. Opt. Lett. 22(24), 1855–1857 (1997)

    Article  Google Scholar 

  62. Bidan, G.: Electroconducting conjugated polymers: new sensitive matrices to build up chemical or electrochemical sensors. A review. Sens. Actuators B Chem. 6(1–3), 45–56 (1992)

    Article  Google Scholar 

  63. Nalwa, H.S. (ed.): Handbook of Organic Conductive Molecules and Polymers, vol. 4. Conducti. Wiley, New York (1997)

    Google Scholar 

  64. Mackley, M.R.: Fundamental principles of polymeric materials. Chem. Eng. J. Biochem. Eng. J. 54(2), 109 (1994)

    Google Scholar 

  65. Mecher, E., Gallego-Gómez, F., Tillmann, H., Hörhold, H.-H., Hummelen, J.C., Meerholz, K.: Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination. Nature 418(6901), 959–964 (2002)

    Article  Google Scholar 

  66. Mecher, E., Bräuchle, C., Hörhold, H.H., Hummelen, J.C., Meerholz, K.: Comparison of new photorefractive composites based on a poly(phenylene vinylene) derivative with traditional poly(n-vinylcarbazole) composites. Phys. Chem. Chem. Phys. 1(8), 1749–1756 (1999)

    Article  Google Scholar 

  67. Suh, D.J., Park, O.O., Ahn, T., Shim, H.K.: Observation of the photorefractive behaviors in the polymer nanocomposite based on p-PMEH-PPV/CdSe-nanoparticle matrix. Opt. Mater. 21(1–3), 365–371 (2003)

    Google Scholar 

  68. Kippelen, B., Blanche, P.-A., Schülzgen, A., Fuentes-Hernandez, C., Ramos-Ortiz, G., Wang, J.-F., Peyghambarian, N., Marder, S.R., Leclercq, A., Beljonne, D., Bredas, J.L.: Photorefractive polymers with non-destructive readout. Adv. Funct. Mater. 12(9), 615–620 (2002)

    Article  Google Scholar 

  69. Chantharasupawong, P., Christenson, C.W., Philip, R., Zhai, L., Winiarz, J., Yamamoto, M., Tetard, L., Nair, R.R., Thomas, J.: Photorefractive performances of a graphene-doped PATPD/7-DCST/ECZ composite. J. Mater. 2(36), 7639–7647 (2014)

    Google Scholar 

  70. Marcus, R.A.: Electron transfer reactions in chemistry: theory and experiment (Nobel lecture). Angew. Chem. Int. Ed. 32(8), 1111–1121 (1993)

    Article  Google Scholar 

  71. Borsenberger, P.M., Fitzgerald, J.J.: Effects of the dipole moment on charge transport in disordered molecular solids. J. Phys. Chem. 97, 4815–4819 (1993)

    Article  Google Scholar 

  72. Dieckmann, A., Bässler, H., Borsenberger, P.M.: An assessment of the role of dipoles on the density-of-states function of disordered molecular solids. J. Chem. Phys 99(10), 8136 (1993)

    Article  Google Scholar 

  73. Van der Auweraer, M., Deschryver, F.C., Borsenberger, P.M., Bassler, H.: Disorder in charge-transport in doped polymers. Adv. Mater. 6(3), 199–213 (1994)

    Article  Google Scholar 

  74. Coropceanu, V., Brédas, J.-L.: Organic transistors: a polarized response. Nat. Mater. 5(12), 929–930 (2006)

    Article  Google Scholar 

  75. Li, H., Termine, R., Godbert, N., Angiolini, L., Giorgini, L., Golemme, A.: Charge photogeneration and transport in side-chain carbazole polymers and co-polymers. Org. Electron. Phys. Mater. Appl. 12(7), 1184–1191 (2011)

    Google Scholar 

  76. Shirota, Y., Kageyama, H.: Charge carrier transporting molecular materials and their applications in devices charge carrier transporting molecular materials and their applications in devices. Chem. Rev 107(4), 953–1010 (2007)

    Article  Google Scholar 

  77. Borsenberger, P.M., Weiss, D.S.: Organic Photoreceptors for Xerography. CRC Press, Boca Raton (1998)

    Google Scholar 

  78. Goonesekera, A., Ducharme, S.: Effect of dipolar molecules on carrier mobilities in photorefractive polymers. J. Appl. Phys 85(9), 6506 (1999)

    Article  Google Scholar 

  79. Lardon, M., Lell-döller, E., Weigl, J.W.: Charge transfer sensitization of some organic photoconductors based on carbazole. Mol. Cryst. 2(3), 241–266 (1967)

    Article  Google Scholar 

  80. Mansurova, S., Meerholz, K., Sliwinska, E., Hartwig, U., Buse, K.: Enhancement of charge carrier transport by doping PVK-based photoconductive polymers with LiNbO3 nanocrystals. Phys. Rev. B Condens. Matter Mater. Phys. 79(17), 1–7 (2009)

    Article  Google Scholar 

  81. Kinashi, K., Wang, Y., Sakai, W., Tsutsumi, N.: Optimization of photorefractivity based on poly(N-vinylcarbazole) composites: an approach from the perspectives of chemistry and physics. Macromol. Chem. Phys. 214(16), 1789–1797 (2013)

    Article  Google Scholar 

  82. Gill, W.D.: Drift mobilities in amorphous charge-transfer complexes of trinitrofluorenone and poly-n-vinylcarbazole. J. Appl. Phys. 43(12), 5033–5040 (1972)

    Article  Google Scholar 

  83. Diaz-Garcia, M.A., Wright, D., Casperson, J.D., Smith, B., Glazer, E., Moerner, W.E.: Photorefractive properties of poly (N-vinyl carbazole)-based composites for high-speed applications. Chem. Mater. 11(7), 1784–1791 (1999)

    Article  Google Scholar 

  84. Gruneisen, M., Dymale, R.: Optical vortex discrimination with a transmission volume hologram. New J. Phys. 13(8), 083030 (2011)

    Article  Google Scholar 

  85. Herlocker, J.A., Fuentes-Hernandez, C., Ferrio, K.B., Hendrickx, E., Blanche, P.-A., Peyghambarian, N., Kippelen, B., Zhang, Y., Wang, J.F., Marder, S.R.: Stabilization of the response time in photorefractive polymers. Appl. Phys. Lett. 77(15), 2292 (2000)

    Article  Google Scholar 

  86. Thomas, J., Christenson, C.W., Blanche, P.-A., Yamamoto, M., Norwood, R.A., Peyghambarian, N.: Photoconducting polymers for photorefractive 3D display applications. Chem. Mater. 23(3), 416–429 (2011)

    Article  Google Scholar 

  87. Chun, H., Moon, I.K., Shin, D.H., Kim, N.: Preparation of highly efficient polymeric photorefractive composite containing an isophorone-based NLO chromophore. Chem. Mater. 13(9), 2813–2817 (2001)

    Article  Google Scholar 

  88. Moon, I.K., Choi, C.S., Kim, N.: Synthesis and photorefractivity of polysiloxanes bearing hole-conductors doped with a nonlinear optical chromophore. Opt. Mater. 31(6), 1017–1021 (2009)

    Article  Google Scholar 

  89. Oh, J.W., Moon, I.K., Kim, N.: The influence of photosensitizers on the photorefractivity in poly[methyl-3-(9-carbazolyl)propylsiloxane]-based composites. J. Photochem. Photobiol. A Chem. 201(2–3), 222–227 (2009)

    Article  Google Scholar 

  90. Wolff, J., Schloter, S., Hofmann, U., Haarer, D., Zilker, S.J.: Speed enhancement of photorefractive polymers by means of light-induced filling of trapping states. J. Opt. Soc. Am. B 16(7), 1080 (1999)

    Article  Google Scholar 

  91. Kwon, O.-P., Lee, S.-H., Montemezzani, G., Günter, P.: Highly efficient photorefractive composites based on layered photoconductive polymers. J. Opt. Soc. Am. B 20(11), 2307 (2003)

    Article  Google Scholar 

  92. Kwon, O.P., Kwon, S.J., Jazbinsek, M., Günter, P., Lee, S.H.: Layered photoconductive polymers: anisotropic morphology and correlation with photorefractive reflection grating response. J. Chem. Phys 124(10), 104705 (2006)

    Article  Google Scholar 

  93. Ogino, K., Nomura, T., Shichi, T., Park, S., Sato, H.: Synthesis of polymers having tetraphenyldiaminobiphenyl units for a host polymer of photorefractive composite. Chem. Mater. 9(25), 2768–2775 (1997)

    Article  Google Scholar 

  94. Tsutsumi, N., Murao, T., Sakai, W.: Photorefractive response of polymeric composites with pendant triphenylamine moiety. Macromolecules 38(17), 7521–7523 (2005)

    Article  Google Scholar 

  95. Tsujimura, S., Kinashi, K., Sakai, W., Tsutsumi, N.: High-speed photorefractive response capability in triphenylamine polymer-based composites. Appl. Phys. Express 5(6), 064101 (2012)

    Article  Google Scholar 

  96. Nalwa, H.S., Miyata, S.: Nonlinear Optics of Organic Molecules and Polymers. CRC Press, Boca Raton (1996)

    Google Scholar 

  97. Cao, Z., Abe, Y., Nagahama, T., Tsuchiya, K., Ogino, K.: Synthesis and characterization of polytriphenylamine based graft polymers for photorefractive application. Polymer 54(1), 269–276 (2013)

    Article  Google Scholar 

  98. West, D.P., Rahn, M.D., Im, C., Bässler, H.: Hole transport through chromophores in a photorefractive polymer composite based on poly(N-vinylcarbazole). Chem. Phys. Lett. 326(5–6), 407–412 (2000)

    Article  Google Scholar 

  99. Ostroverkhova, O., Stickrath, A., Singer, K.D.: Electric field-induced second harmonic generation studies of chromophore orientational dynamics in photorefractive polymers. J. Appl. Phys. 91(12), 9481–9486 (2002)

    Article  Google Scholar 

  100. Quintana, J.A., Boj, P.G., Villalvilla, J.M., Ortíz, J., Fernández-Lázaro, F., Sastre-Santos, Á., Díaz-García, M.A.: Photorefractive properties of an unsensitized polymer composite based on a dicyanostyrene derivative as nonlinear optical chromophore. Appl. Phys. Lett. 87(26), 1–3 (2005)

    Article  Google Scholar 

  101. Gallego-Gómez, F., Álvarez-Santos, J.C., Rodríguez-Redondo, J.L., Font-Sanchis, E., Villalvilla, J.M., Sastre-Santos, Á., Díaz-García, M.A., Fernández-Lázaro, F.: Millisecond photorefractivity with novel dicyanomethylenedihydrofuran-containing polymers. J. Mater. Chem 22(24), 12220 (2012)

    Article  Google Scholar 

  102. Law, K.Y.: Organic photoconductive materials: recent trends and developments. Chem. Rev. 93(1), 449–486 (1993)

    Article  Google Scholar 

  103. Hendrickx, E., Kippelen, B., Thayumanavan, S., Marder, S.R., Persoons, A., Peyghambarian, N.: High photogeneration efficiency of charge-transfer complexes formed between low ionization potential arylamines and C60. J. Chem. Phys. 112(21), 9557–9561 (2000)

    Article  Google Scholar 

  104. Köber, S., Gallego-Gomez, F., Salvador, M., Kooistra, F.B., Hummelen, J.C., Aleman, K., Mansurova, S., Meerholz, K.: Influence of the sensitizer reduction potential on the sensitivity of photorefractive polymer composites. J. Mater. Chem. 20(29), 6170 (2010)

    Article  Google Scholar 

  105. Grunnet-Jepsen, A., Wright, D., Smith, B., Bratcher, M.S., DeClue, M.S., Siegel, J.S., Moerner, W.E.: Spectroscopic determination of trap density in C60 -sensitized photorefractive polymers. Chem. Phys. Lett. 291, 553–561 (1998)

    Article  Google Scholar 

  106. Tsutsumi, N., Kinashi, K., Nonomura, A., Sakai, W.: Quickly updatable hologram images using poly(N-vinyl carbazole) (PVCz) photorefractive polymer composite. Materials 5(8), 1477–1486 (2012)

    Article  Google Scholar 

  107. Silence, S.M., Walsh, C.A., Scott, J.C., Moerner, W.E.: C60 sensitization of a photorefractive polymer. Appl. Phys. Lett. 61(25), 2967–2969 (1992)

    Article  Google Scholar 

  108. Orgiu, E., Samorì, P.: 25th anniversary article: organic electronics marries photochromism: generation of multifunctional interfaces, materials, and devices. Adv. Mater. 26(12), 1827–1844 (2014)

    Article  Google Scholar 

  109. Ditte, K., Jiang, W., Schemme, T., Denz, C., Wang, Z.: Innovative sensitizer diPBI outperforms PCBM. Adv. Mater. 24(16), 2104–2108 (2012)

    Article  Google Scholar 

  110. Tay, S., Thomas, J., Eralp, M., Li, G., Kippelen, B., Marder, S.R., Meredith, G., Schulzgen, A., Peyghambarian, N.: Photorefractive polymer composite operating at the optical communication wavelength of 1550 nm. Appl. Phys. Lett. 85(20), 4561 (2004)

    Article  Google Scholar 

  111. Grishina, A.D., Krivenko, T.V., Savel’ev, V.V., Rychwalski, R.W., Vannikov, A.V.: Photoelectric, nonlinear optical, and photorefractive properties of polyvinylcarbazole composites with single-wall carbon nanotubes. High Energy Chem. 43(7), 540–542 (2009)

    Article  Google Scholar 

  112. Vannikov, A.V., Rychwalski, R.W., Grishina, A.D., Pereshivko, L.Y., Krivenko, T.V., Savel’ev, V.V., Zolotarevski, V.I.: Photorefractive polymer composites for the IR region based on carbon nanotubes. Opt. Spectrosc. 99(4), 643–648 (2005)

    Article  Google Scholar 

  113. Grishina, A.D., Krivenko, T.V., Savel’ev, V.V., Rychwalski, R.W., Vannikov, A.V., Grishina, A.D., Laryushkin, A.S., Krivenko, T.V., Savel’ev, V.V., Rychwalski, R.W.: Photoelectric, nonlinear optical, and photorefractive properties of polyvinylcarbazole composites with single-wall carbon nanotubes. High Energy Chem. 55(3), 540–542 (2013)

    Google Scholar 

  114. Galoppini, E.: Linkers for anchoring sensitizers to semiconductor nanoparticles. Coord. Chem. Rev. 248(13–14), 1283–1297 (2004)

    Article  Google Scholar 

  115. Anderson, N.A., Lian, T.: Ultrafast electron transfer at the molecule-semiconductor nanoparticle interface. Annu. Rev. Phys. Chem. 56(78), 491–519 (2005)

    Article  Google Scholar 

  116. Kramer, I.J., Sargent, E.H.: The architecture of colloidal quantum dot solar cells: materials to devices. Chem. Rev. 114(1), 863–882 (2014)

    Article  Google Scholar 

  117. Sargent, H., Sargent, E.H.: Colloidal quantum dot solar cells. Nat. Photon. 6(3), 133–135 (2012)

    Article  Google Scholar 

  118. Kamat, P.V., Tvrdy, K., Baker, D.R., Radich, J.G.: Beyond photovoltaics: semiconductor nanoarchitectures for liquid-junction solar cells. Chem. Rev. 110(11), 6664–6688 (2010)

    Article  Google Scholar 

  119. Talapin, D.V., Lee, J.-S., Kovalenko, M.V., Shevchenko, E.V.: Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110, 389–458 (2010)

    Article  Google Scholar 

  120. Fuentes-Hernandez, C., Suh, D.J., Kippelen, B., Marder, S.R.: High-performance photorefractive polymers sensitized by cadmium selenide nanoparticles. Appl. Phys. Lett. 85(4), 534–536 (2004)

    Article  Google Scholar 

  121. Winiarz, J.G., Zhang, L., Lal, M., Friend, C.S., Prasad, P.N.: Photogeneration, charge transport, and photoconductivity of a novel PVK/CdS-nanocrystal polymer composite. Chem. Phys. 245(1–3), 417–428 (1999)

    Article  Google Scholar 

  122. Winiarz, J.G.: Enhancement of the photorefractive response time in a polymeric composite photosensitized with CdTe nanoparticles. J. Phys. Chem. C 111(5), 1904–1911 (2007)

    Article  Google Scholar 

  123. Li, X., Chon, J.W.M., Gu, M.: Nanoparticle-based photorefractive polymers. Aust. J. Chem. 61(5), 317–323 (2008)

    Article  Google Scholar 

  124. Binks, D.J., Bant, S.P., West, D.P., O’Brien, P., Malik, M.A.: CdSe/CdS core/shell quantum dots as sensitizer of a photorefractive polymer composite. J. Mod. Opt. 50(2), 299–310 (2003)

    Google Scholar 

  125. Li, X., Van Embden, J., Evans, R.A., Gu, M.: Type-II core/shell nanoparticle induced photorefractivity. Appl. Phys. Lett. 98(23), 231107 (2011)

    Article  Google Scholar 

  126. Zhu, J., Kim, W.J., He, G.S., Seo, J., Yong, K.T., Lee, D., Cartwright, A.N., Cui, Y., Prasad, P.N.: Enhanced photorefractivity in a polymer/nanocrystal composite photorefractive device at telecommunication wavelength. Appl. Phys. Lett. 97(26), 263108 (2010)

    Article  Google Scholar 

  127. Anczykowska, A., Bartkiewicz, S., Nyk, M., Myśliwiec, J.: Enhanced photorefractive effect in liquid crystal structures co-doped with semiconductor quantum dots and metallic nanoparticles. Appl. Phys. Lett. 99(19), 191109 (2011)

    Article  Google Scholar 

  128. Li, C., Li, X., Cao, L., Jin, G., Gu, M.: Exciton-plasmon coupling mediated photorefractivity in gold-nanoparticle- and quantum-dot-dispersed polymers. Appl. Phys. Lett. 102(25), 2011–2015 (2013)

    Google Scholar 

  129. Braze, C.S., Rosen, S.L.: Fundamental Principles of Polymeric Materials. Wiley, New York (2012)

    Google Scholar 

  130. Cheng, N., Swedek, B., Prasad, P.N.: Thermal fixing of refractive index gratings in a photorefractive polymer. Appl. Phys. Lett. 71(13), 1828–1830 (1997)

    Article  Google Scholar 

  131. Li, G., Wang, P., Eralp, M., Thomas, J., Norwood, R.A., Yamamoto, M., Peyghambarian, N.: Efficient local fixing of photorefractive polymer holograms using a laser beam. SPIE Proc. 6314, 631401–631401-9 (2006)

    Article  Google Scholar 

  132. Lv, W., Chen, Z., Gong, Q.: Improvement on the photorefractive performance by the insertion of a SiO2 blocking layer. J. Opt. A Pure Appl. Opt. 9(5), 486–489 (2007)

    Article  Google Scholar 

  133. Wang, P., Simavoryan, S., Lin, W., Hsieh, W.-Y., Yamamoto, M.: Photorefractive devices having sol-gel buffer layers and methods of manufacturing. US 20130321897 A1, 2013

    Google Scholar 

  134. Christenson, C.W.: Improving Sensitivity of Photorefractive Polymer Composites. The University of Arizona, Tucson (2011)

    Google Scholar 

  135. Gallego-Gomez, F., Salvador, M.: High-performance reflection gratings in photorefractive polymers. Appl. Phys. 90(25), 251113 (2007)

    Google Scholar 

  136. Eralp, M., Thomas, J., Tay, S., Blanche, P.A., Schülzgen, A., Norwood, R.A., Yamamoto, M., Peyghambarian, N.: Variation of Bragg condition in low-glass-transition photorefractive polymers when recorded in reflection geometry. Opt. Express 15(18), 11622 (2007)

    Article  Google Scholar 

  137. Stankus, J.J., Silence, S.M., Moerner, W.E., Bjorldund, G.C.: Electric-field-switchable stratified volume holograms in photorefractive polymers. Opt. Lett. 19(18), 1480–1482 (1994)

    Article  Google Scholar 

  138. Hayasaki, Y., Ishikura, N.: Thick photorefractive polymer device with coplanar electrodes. Rev. Sci. Instrum. 74(8), 3693 (2003)

    Article  Google Scholar 

  139. Christenson, C., Greenlee, C., Lynn, B., Thomas, J., Blanche, P.-A., Voorakaranam, R., Saint-Hilaire, P., LaComb, L., Norwood, R.A., Yamamoto, M., Peyghambarian, N.: Interdigitated coplanar electrodes for enhanced sensitivity in a photorefractive polymer. Opt. Lett. 36(17), 3377–3379 (2011)

    Article  Google Scholar 

  140. Lynn, B., Miles, A., Mehravar, S., Blanche, P.-A., Kieu, K., Norwood, R.A., Peyghambarian, N.: Real-time imaging of chromophore alignment in photorefractive polymer devices through multiphoton microscopy. MRS Commun. 5(2), 243–250 (2015)

    Article  Google Scholar 

  141. Däubler, T., Bittner, R., Meerholz, K., Cimrová, V., Neher, D.: Charge carrier photogeneration, trapping, and space-charge field formation in PVK-based photorefractive materials. Phys. Rev. B 61(20), 13515–13527 (2000)

    Article  Google Scholar 

  142. Karl, N.: Charge carrier transport in organic semiconductors. Synth. Met. 133–134, 649–657 (2003)

    Article  Google Scholar 

  143. Kokil, A., Yang, K., Kumar, J.: Techniques for characterization of charge carrier mobility in organic semiconductors. J. Polym. Sci. Part B Polym. Phys. 50(15), 1130–1144 (2012)

    Article  Google Scholar 

  144. Sienkowska, M.J., Monobe, H., Kaszynski, P., Shimizu, Y.: Photoconductivity of liquid crystalline derivatives of pyrene and carbazole. J. Mater. Chem. 17(14), 1392 (2007)

    Article  Google Scholar 

  145. Biaggio, I.: Holographic time of flight. In: Peled, A. (ed.) Photo-Excited Processes, Diagnostics and Applications, p. 101. Springer, New York (2004)

    Chapter  Google Scholar 

  146. Xu, J., Stickrath, A.B., Bhattacharya, P., Nees, J., Váró, G., Hillebrecht, J.R., Ren, L., Birge, R.R.: Direct measurement of the photoelectric response time of bacteriorhodopsin via electro-optic sampling. Biophys. J. 85(2), 1128–1134 (2003)

    Article  Google Scholar 

  147. Fujihara, T., Sassa, T., Kawada, T., Mamiya, J.I., Muto, T., Umegaki, S.: Simplified procedure for interferometric determination of electro-optic properties of low-Tg photorefractive polymer. J. Appl. Phys. 107(2), 023112–023112-5 (2010)

    Article  Google Scholar 

  148. Teng, C.C., Man, H.T.: Simple reflection technique for measuring the electro-optic coefficient of poled polymers. Appl. Phys. Lett. 56(18), 1734–1736 (1990)

    Article  Google Scholar 

  149. Sandalphon, Kippelen, B., Meerholz, K., Peyghambarian, N.: Ellipsometric measurements of poling birefringence, the Pockels effect, and the Kerr effect in high-performance photorefractive polymer composites. Appl. Opt. 35(14), 2346 (1996)

    Article  Google Scholar 

  150. Boyd, R.W.: Nonlinear Optics. Academic Press, San Diego (2008)

    Google Scholar 

  151. Walsh, C.A., Moerner, W.E.: Two-beam coupling measurements of grating phase in a photorefractive polymer. J. Opt. Soc. Am. B 9(9), 1642 (1992)

    Article  Google Scholar 

  152. Kawabe, Y., Fukuzawa, K., Uemura, T., Matsuura, K., Yoshikawa, T., Nishide, J., Sasabe, H.: Formation of photo-induced index grating in azo-carbazole dye-doped polymer. Proc. SPIE 8474, 84740U (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Alexandre Blanche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Blanche, PA., Lynn, B. (2016). Introduction to the Photorefractive Effect in Polymers. In: Blanche, PA. (eds) Photorefractive Organic Materials and Applications. Springer Series in Materials Science, vol 240. Springer, Cham. https://doi.org/10.1007/978-3-319-29334-9_1

Download citation

Publish with us

Policies and ethics