Skip to main content

Functional Representation of Prototypes in LVQ and Relevance Learning

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 428))

Abstract

We present a framework for distance-based classification of functional data. We consider the analysis of labeled spectral data by means of Generalized Matrix Relevance Learning Vector Quantization (GMLVQ) as an example. Feature vectors and prototypes are represented as functional expansions in order to take advantage of the functional nature of the data. Specifically, we employ truncated Chebyshev series in the context of several spectral datasets available in the public domain. GMLVQ is applied in the space of expansion coefficients and its performance is compared with the standard approach in original feature space, which ignores the functional nature of the data. Data smoothing by polynomial expansion alone is also considered for comparison. Computer experiments show that, beyond the reduction of dimensionality and computational effort, the method offers the potential to improve classification performance significantly.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Backhaus, A.: Wettbewerb Detektion von defekten Bohnen im Rohkaffee. Fraunhofer Inst. for Factory Operation and Automation, Biosystems Engineering (2012)

    Google Scholar 

  2. Backhaus, A., Seiffert, U.: Classification in high-dimensional spectral data: accuracy vs. interpretability vs. model size. Neurocomputing 131, 15–22 (2014)

    Article  Google Scholar 

  3. Biehl, M.: A no-nonsense beginner’s tool for GMLVQ. University of Groningen. http://www.cs.rug.nl/~biehl/gmlvq

  4. Biehl, M., Hammer, B., Verleysen, M., Villmann, T. (eds.): Similarity Based Clustering. Springer Lecture Notes in Artificial Intelligence, vol. 5400 (2009)

    Google Scholar 

  5. Biehl, M., Hammer, B., Villmann, T.: Distance measures for prototype based classfication. In: Grandinetti, L., Petkov, N., Lippert, T. (eds.) BrainComp 2013, Proceedings of the International Workshop on Brain-Inspired Computing, Cetraro/Italy, 2013. Lecture Notes in Computer Science, vol. 8603, pp. 100–116. Springer (2014)

    Google Scholar 

  6. Biehl, M., Schneider, P., Bunte, K.: Relevance and Matrix adaptation in Learning Vector Quantization (GRLVQ, GMLVQ and LiRaM LVQ). University of Gronignen. http://matlabserver.cs.rug.nl/gmlvqweb/web/

  7. Bunte, K., Schneider, P., Hammer, B., Schleif, F.M., Villmann, T., Biehl, M.: Limeted rank matrix learning, discriminative dimension reduction and visualization. Neural Netw. 26, 159–173 (2012)

    Article  Google Scholar 

  8. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)

    Article  MATH  Google Scholar 

  9. Driscoll, T.A., Hale, N., Trefethen, L.N.: Chebfun Guide. Pafnuty Publications (2014)

    Google Scholar 

  10. Duda, R., Hart, P., Stork, D.: Pattern Classification. Wiley (2000)

    Google Scholar 

  11. Kästner, M., Hammer, B., Biehl, M., Villmann, T.: Generalized functional relevance learning vector quantization. In: Verleysen, M. (ed.) Proceedings of the European Symposium on Artificial Neural Networks (ESANN), pp. 93–98. d-side (2011)

    Google Scholar 

  12. Kohonen, T.: Self-organizing Maps. Springer, Berlin (1995)

    Book  Google Scholar 

  13. Krier, C., François, D., Rossi, F., Verleysen, M., et al.: Supervised variable clustering for classification of nir spectra. In: Verleysen, M. (ed.) Proceedings of the European Symposium on Artificial Neural Networks (ESANN), pp. 263–268. d-side (2009)

    Google Scholar 

  14. Lee, J.A., Verleysen, M.: Generalization of the Lp norm for time series and its application to self-organizing maps. In: Cottrell, M. (Eds.): Proceedings of the Workshop on Self-Organizing Maps (WSOM) 2005, pp. 733–740. Paris, Sorbonne (2005)

    Google Scholar 

  15. Meurens, M.: Orange juice near-infrared spectra dataset and wine mean infrared spectra dataset. University of Louvain. http://mlg.info.ucl.ac.be/index.php?page=DataBases

  16. Papari, G., Bunte, K., Biehl, M.: Waypoint averaging and step size control in learning by gradient descent. Machine Learning Reports MLR-06/2011, vol. 16 (2011)

    Google Scholar 

  17. Ramsay, J., Silverman, B.: Functional Data Analysis. Springer (2006)

    Google Scholar 

  18. Sato, A., Yamada, K.: Generalized learning vector quantization. In: Tesauro, G., Touretzky, D., Leen, T. (eds.) Advances in Neural Information Processing Systems. vol. 7, pp. 423–429. MIT Press (1995)

    Google Scholar 

  19. Schneider, P., Biehl, M., Schleif, F.M., Hammer, B.: Advanced metric adaptation in Generalized LVQ for classification of mass spetrometry data. In: Proceedings of the 6th International Workshop on Self-Organizing-Maps (WSOM), 5 pp. Bielefeld University (2007)

    Google Scholar 

  20. Schneider, P., Biehl, M., Hammer, B.: Adaptive relevance matrices in Learning Vector Quantization. Neural Comput. 21, 3532–3561 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Seo, S., Bode, M., Obermayer, K.: Soft nearest prototype classification. IEEE Trans. Neural Netw. 14(2), 390–398 (2003)

    Article  Google Scholar 

  22. The Chebfun Developers: Chebfun—Numerical Computing with functions. University of Oxford. http://www.chebfun.org

  23. Thodberg, H.H.: Tecator meat sample dataset. StatLib Datasets Archive. http://lib.stat.cmu.edu/datasets/tecator

  24. Villmann, T., Hammer, B.: Functional principal component learning using Oja’s method and Sobolev norms. In: J. Princip, R. Miikulainen (eds.): Advances in Self-Organizing Maps—Proceedings of the Workshop on Self-Organizing Maps (WSOM) 2009. Springer Lecture Notes on Computer Science 5629: 325–333 (2009)

    Google Scholar 

  25. Weinberger, K., Saul, L.: Distance metric learning for large margin classification. J. Mach. Learn. Res. 10, 207–244 (2009)

    MATH  Google Scholar 

Download references

Acknowledgments

F. Melchert thanks for support through an Ubbo-Emmius Sandwich Scholarship by the Faculty of Mathematics and Natural Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Friedrich Melchert , Udo Seiffert or Michael Biehl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Melchert, F., Seiffert, U., Biehl, M. (2016). Functional Representation of Prototypes in LVQ and Relevance Learning. In: Merényi, E., Mendenhall, M., O'Driscoll, P. (eds) Advances in Self-Organizing Maps and Learning Vector Quantization. Advances in Intelligent Systems and Computing, vol 428. Springer, Cham. https://doi.org/10.1007/978-3-319-28518-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28518-4_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28517-7

  • Online ISBN: 978-3-319-28518-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics