Skip to main content

The Distance-Based Representative Skyline Calculation Using Unsupervised Extreme Learning Machines

  • Conference paper
  • First Online:
Proceedings of ELM-2015 Volume 1

Part of the book series: Proceedings in Adaptation, Learning and Optimization ((PALO,volume 6))

  • 1236 Accesses

Abstract

A representative skyline contains k skyline points that can represent its full skyline, which is very useful in the multiple criteria decision making problems. In this paper, we focus on the distance-based representative skyline (k-DRS) query which can describe the tradeoffs among different dimensions offered by the full skyline. Since k-DRS is a NP-hard problem in d-dimensional (\(d\ge 3\)) space, it is impossible to calculate the exact k-DRS in d-dimensional space. By in-depth analyzing the properties of the k-DRS, we propose a new perspective to solve this problem and a k distance-based representative skyline algorithm based on US-ELM (DRSELM) is presented. In DRSELM, first we apply US-ELM to divide the full skyline set into k clusters. Second, in each cluster, we design a method to select a point as the representative point. Experimental results show that our DRSELM significantly outperforms its competitors in terms of both accuracy and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stephan, B.: Donald Kossmann, Konrad Stocker: The Skyline Operator. ICDE, pp. 421–430 (2001)

    Google Scholar 

  2. Tao, Y., Ding, L., Lin, X., Pei, J.: Distance-Based Representative Skyline. ICDE, pp. 892–903 (2009)

    Google Scholar 

  3. Huang, G., Zhu, Q., Siew, C.-K.: Extreme learning machine: a new learning scheme of feedforward neural networks. Proc. Int. Jt. Conf. Neural Netw. 2, 985–990 (2004)

    Google Scholar 

  4. Huang, G., Zhu, Q., Siew, C.-K.: Extreme learning machine: theory and applications. Neurocomputing 70, 489–501 (2006)

    Article  Google Scholar 

  5. Huang, G.: What are extreme learning machines? Filling the gap between Frank Rosenblatt’s Dream and John von Neumann’s Puzzle. Cogn. Comput. 7(3), 263–278 (2015)

    Article  Google Scholar 

  6. Cherkassky, Vladimir: The nature of statistical learning theory. IEEE Trans. Neural Netw. 8(6), 1564 (1997)

    Article  Google Scholar 

  7. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  8. Shi, L., Baoliang, L.: EEG-based vigilance estimation using extreme learning machines. Neurocomputing 102, 135–143 (2013)

    Article  Google Scholar 

  9. Huang, G., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B 42(2), 513–529 (2012)

    Article  Google Scholar 

  10. Rong, H., Huang, G., Sundararajan, N., Saratchandran, P.: Online sequential fuzzy extreme learning machine for function approximation and classification problems. IEEE Trans. Syst. Man Cybern. Part B 39(4), 1067–1072 (2009)

    Article  Google Scholar 

  11. Zhao, J., Wang, Z.: Dong Sun Park: online sequential extreme learning machine with forgetting mechanism. Neurocomputing 87, 79–89 (2012)

    Article  Google Scholar 

  12. Liang, N., Huang, G., Saratchandran, P., Sundararajan, N.: A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans. Neural Netw. 17(6), 1411–1423 (2006)

    Article  Google Scholar 

  13. He, Q., Changying, D., Wang, Q., Zhuang, F., Shi, Z.: A parallel incremental extreme SVM classifier. Neurocomputing 74(16), 2532–2540 (2011)

    Article  Google Scholar 

  14. Huang, G., Song, S., Gupta, J.N.D., Wu, C.: Semi-Supervised and unsupervised extreme learning machines. IEEE Trans. Cybern. 44(12), 2405–2417 (2014)

    Google Scholar 

  15. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 881–892 (2001)

    Article  Google Scholar 

  16. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)

    Article  MATH  Google Scholar 

  17. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. Adv. Neural Inform. Process. Syst. 2, 849C856 (2002)

    Google Scholar 

  18. Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1–127 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Serre, D.: TMatrices: Theory and Applications. Springer, Berlin (2002)

    Google Scholar 

  20. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting. ICDE 717–719 (2003)

    Google Scholar 

  21. Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: an online algorithm for skyline queries. VLDB 275–286 (2002)

    Google Scholar 

  22. Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm for skyline queries. SIGMOD Conference 467–478 (2003)

    Google Scholar 

  23. Liu, B., Chan, C.-Y.: ZINC: efficient indexing for skyline computation. PVLDB, 4(3), 197–207 (2020)

    Google Scholar 

  24. Pei, J., Jin, W., Ester, M., Tao, Y.: Catching the best views of skyline: a semantic approach based on decisive subspaces. VLDB 253–264 (2005)

    Google Scholar 

  25. Lin, X., Yuan, Y., Zhang, Q., Zhang, Y.: Selecting stars: the \(k\) most representative skyline operator. ICDE 86–95 (2007)

    Google Scholar 

Download references

Acknowledgments

This research was partially supported by the National Natural Science Foundation of China under Grant Nos. 61472069, 61402089, 61100022 and 61173029; the National High Technology Research and Development Plan (863 Plan) under Grant No. 2012AA011004; and the Fundamental Research Funds for the Central Universities under Grant No. N130404014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Bai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Bai, M., Xin, J., Wang, G., Wang, X. (2016). The Distance-Based Representative Skyline Calculation Using Unsupervised Extreme Learning Machines. In: Cao, J., Mao, K., Wu, J., Lendasse, A. (eds) Proceedings of ELM-2015 Volume 1. Proceedings in Adaptation, Learning and Optimization, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-28397-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28397-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28396-8

  • Online ISBN: 978-3-319-28397-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics