Skip to main content

Mechanical Two-Terminal Networks for a System with Lumped Parameters

  • Chapter
  • First Online:
Theory of Vibration Protection

Abstract

An analysis of steady-state vibration of linear dynamical systems subjected to harmonic force and/or kinematic exposure can be reduced to analysis of mechanical two-term networks (M2TN), also known as replacement schemes, which are equivalent to the original scheme. The two representations of the system are equivalent in the sense that both representations can be described by the same differential equations. The theory of analogy [1–4] is what makes such an interchange possible. The advantage of representing a dynamical system as a replacement scheme is that its construction for multi-element dynamical systems is fairly simple and consists in analyzing M2TN by algebraic methods [5], whereas analysis of the original design diagram must be performed by solutions to differential equations. Another advantage of representing systems through M2TN is that theorems often used to analyze electrical circuits (Kirchhoff’s rule, Thevenin and Norton’s theorem, principle of superposition, etc.) can also be applied to replacement schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Olson, H. F. (1958). Dynamical analogies (2nd ed.). Princeton, NJ: D. Van Nostrand.

    Google Scholar 

  2. Tse, F. S., Morse, I. E., & Hinkle, R. T. (1963). Mechanical vibrations. Boston: Allyn and Bacon.

    Google Scholar 

  3. Lenk, A. (1975). Elektromechanische systeme. Band 1: Systeme mit konzentrierten parametern. Berlin: VEB Verlag Technnic.

    Google Scholar 

  4. Ogata, K. (1992). System dynamics (2nd ed.). Englewood Cliff, NJ: Prentice Hall.

    MATH  Google Scholar 

  5. Brown, J. W., & Churchill, R. V. (2009). Complex variables and applications—Solutions manual (8th ed.). New York: McGraw-Hill.

    Google Scholar 

  6. Fahy, F., & Walker, J. (1998). Fundamentals of noise and vibration. New York: CRC Press.

    Google Scholar 

  7. Newland, D. E. (1989). Mechanical vibration analysis and computation. Harlow, England: Longman Scientific and Technical.

    Google Scholar 

  8. Gupta, S. C., Bayless, J. W., & Peikari, B. (1972). Circuit analysis with computer application to problem solving. Scranton, PA: Intext Educational.

    Google Scholar 

  9. Shearer, J. L., Murphy, A. T., & Richardson, H. H. (1971). Introduction to system dynamics. Reading, MA: Addison-Wesley.

    Google Scholar 

  10. Williams, R. L. (2014). Mechanism kinematics & dynamics and vibrational modeling. Mech. Engineering, Ohio University.

    Google Scholar 

  11. Hixson, E. L. (1996). Mechanical impedance. In Handbook: Shock and Vibration. Harris C.M.(Editor in Chief). McGraw Hill, 4th Edition, 1996, (Ch. 10).

    Google Scholar 

  12. Karnovsky, I. A., & Lebed, O. (2004). Free vibrations of beams and frames. Eigenvalues and eigenfunctions. New York: McGraw-Hill Engineering Reference.

    Google Scholar 

  13. Skudrzyk, E. J. (1972). The foundations of acoustics. New York: Springer.

    MATH  Google Scholar 

  14. Gardonio, P., & Brennan, M. J. (2002). On the origins and development of mobility and impedance methods in structural dynamics. Journal of Sound and Vibration, 249(3), 557–573.

    Article  Google Scholar 

  15. Bulgakov, B. V. (1954). The vibrations. Gosizdat: Moscow.

    Google Scholar 

  16. Druzhinsky, I. A. (1977). Mechanical networks. Leningrad, Russia: Mashinostroenie.

    Google Scholar 

  17. Kljukin, I. I. (Ed.). (1978). Handbook on the ship acoustics. Leningrad, Russia: Sudostroenie.

    Google Scholar 

  18. Bishop, R. E. D., & Johnson, D. C. (1960). The mechanics of vibration. New York: Cambridge University Press.

    MATH  Google Scholar 

  19. Thomson, W. T. (1981). Theory of vibration with application (2nd ed.). Englewood Cliffs, NJ: Prentice-Hall.

    MATH  Google Scholar 

  20. Liangliang, Z., & Yinzhao, L. (2013). Three classical papers on the history of the phasor method [J]. Transactions of China Electrotechnical Society, 28(1), 94–100.

    Google Scholar 

  21. D’Azzo, J. J., & Houpis, C. H. (1995). Linear control systems. Analysis and design (4th ed.). New York: McGraw-Hill.

    MATH  Google Scholar 

  22. Chelomey, V. N. (Ed.). (1978-1981). Vibrations in engineering. Handbook (Vols. 1–6). Moscow: Mashinostroenie.

    Google Scholar 

  23. Harris, C. M. (Editor in Chief). (1996). Shock and vibration handbook (4th ed.). New York: McGraw-Hill.

    Google Scholar 

  24. Karnovsky, I. A., & Lebed, O. (2010). Advanced methods of structural analysis. New York: Springer.

    Book  Google Scholar 

  25. Karnovsky, I. A., & Lebed, O. (2001). Formulas for structural dynamics. Tables, graphs and solutions. New York: McGraw Hill.

    Google Scholar 

  26. Clough, R. W., & Penzien, J. (1975). Dynamics of structures. New York: McGraw-Hill.

    MATH  Google Scholar 

  27. Frolov, K. V. (Ed.). (1981). Protection against vibrations and shocks. vol. 6. In Handbook: Chelomey, V.N. (Editor in Chief) (1978–1981). Vibration in Engineering (Vols.1-6). Moscow: Mashinostroenie.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Karnovsky, I.A., Lebed, E. (2016). Mechanical Two-Terminal Networks for a System with Lumped Parameters. In: Theory of Vibration Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-28020-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28020-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28018-9

  • Online ISBN: 978-3-319-28020-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics