Skip to main content

An Adaptive Classification Framework for Unsupervised Model Updating in Nonstationary Environments

  • Conference paper
  • First Online:
Book cover Machine Learning, Optimization, and Big Data (MOD 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9432))

Included in the following conference series:

Abstract

This paper introduces an adaptive framework that makes use of ensemble classification and self-training to maintain high classification performance in datasets affected by concept drift without the aid of external supervision to update the model of a classifier. The updating of the model of the framework is triggered by a mechanism that infers the presence of concept drift based on the analysis of the differences between the outputs of the different classifiers. In order to evaluate the performance of the proposed algorithm, comparisons were made with a set of unsupervised classification techniques and drift detection techniques. The results show that the framework is able to react more promptly to performance degradation than the existing methods and this leads to increased classification accuracy. In addition, the framework stores a smaller amount of instances with respect to a single-classifier approach.

The first author would like to thank the NCR corporation for sponsoring this project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal, C.C., Watson, T.J., Ctr, R., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving data streams. In: Proceedings of the Twenty-nineth International Conference on Very Large Data Bases, VLDB 2003, vol. 29, pp. 81–92. VLDB Endowment, Berlin (2003)

    Google Scholar 

  2. Basu, S., Banerjee, A., Mooney, R.J.: Semi-supervised clustering by seeding. In: Proceedings of the Nineteenth International Conference on Machine Learning, ICML 2002, pp. 27–34. Morgan Kaufmann Publishers Inc., San Francisco (2002)

    Google Scholar 

  3. Cao, F., Ester, M., Qian, W., Zhou, A.: Density-based clustering over an evolving data stream with noise. In: Proceedings of the Sixth SIAM International Conference on Data Mining, SDM 2006, pp. 328–339. SIAM (2006)

    Google Scholar 

  4. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Ditzler, G., Polikar, R.: An ensemble based incremental learning framework for concept drift and class imbalance. In: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–8, July 2010

    Google Scholar 

  6. Dries, A., Rückert, U.: Adaptive concept drift detection. Stat. Anal. Data Min. 2(5–6), 311–327 (2009)

    Article  MathSciNet  Google Scholar 

  7. Friedman, J.H., Rafsky, L.C.: Multivariate generalizations of the Wald-Wolfowitz and Smirnov two-sample tests. Ann. Stat. 7, 697–717 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. (CSUR) 46(4), 44 (2014)

    Article  Google Scholar 

  9. Hido, S., Idé, T., Kashima, H., Kubo, H., Matsuzawa, H.: Unsupervised change analysis using supervised learning. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 148–159. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Gonçalves Jr., P.M., de Carvalho Santos, S.G., Barros, R.S., Vieira, D.C.: A comparative study on concept drift detectors. Expert Syst. Appl. 41(18), 8144–8156 (2014)

    Article  Google Scholar 

  11. Li, P., Wu, X., Hu, X.: Mining recurring concept drifts with limited labeled streaming data. ACM Trans. Intell. Syst. Technol. 3(2), 29:1–29:32 (2012)

    Google Scholar 

  12. Nishida, K., Yamauchi, K., Omori, T.: ACE: Adaptive classifiers-ensemble system for concept-drifting environments. In: Oza, N.C., Polikar, R., Kittler, J., Roli, F. (eds.) MCS 2005. LNCS, vol. 3541, pp. 176–185. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Polikar, R.: Ensemble based systems in decision making. IEEE Circ. Syst. Mag. 6(3), 21–45 (2006)

    Article  Google Scholar 

  14. Sahel, Z., Bouchachia, A., Gabrys, B., Rogers, P.: Adaptive mechanisms for classification problems with drifting data. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007, Part II. LNCS (LNAI), vol. 4693, pp. 419–426. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Tsymbal, A.: The problem of concept drift: Definitions and related work. Technical report, Trinity College Dublin, Ireland (2004)

    Google Scholar 

  16. Vargha, A., Delaney, H.D.: A critique and improvement of the “CL” common language effect size statistics of McGraw and Wong. J. Educ. Behav. Stat. 25(2), 101–132 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piero Conca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Conca, P., Timmis, J., de Lemos, R., Forrest, S., McCracken, H. (2015). An Adaptive Classification Framework for Unsupervised Model Updating in Nonstationary Environments. In: Pardalos, P., Pavone, M., Farinella, G., Cutello, V. (eds) Machine Learning, Optimization, and Big Data. MOD 2015. Lecture Notes in Computer Science(), vol 9432. Springer, Cham. https://doi.org/10.1007/978-3-319-27926-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27926-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27925-1

  • Online ISBN: 978-3-319-27926-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics