Skip to main content

Real-Time Tear Film Classification Through Cost-Based Feature Selection

  • Chapter
  • First Online:
Transactions on Computational Collective Intelligence XX

Abstract

Dry eye syndrome is an important public health problem, and can be briefly defined as a symptomatic disease which affects a wide range of population and has a negative impact on their daily activities. In clinical practice, it can be diagnosed by the observation of the tear film lipid layer patterns, and their classification into one of the Guillon categories. However, the time required to extract some features from tear film images prevents the automatic systems to work in real time. In this paper we apply a framework for cost-based feature selection to reduce this high computational time, with the particularity that it takes the cost into account when deciding which features to select. Specifically, three representative filter methods are chosen for the experiments: Correlation-Based Feature Selection (CFS), minimum-Redundancy-Maximum-Relevance (mRMR) and ReliefF. Results with a Support Vector Machine as a classifier showed that the approach is sound, since it allows to reduce considerably the computational time without significantly increasing the classification error.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pflugfelder, S., Tseng, S., Sanabria, O., Kell, H., Garcia, C., Felix, C., Feuer, W., Reis, B.: Evaluation of subjective assessments and objective diagnostic tests for diagnosing tear-film disorders known to cause ocular irritation. Cornea 17(1), 38–56 (1998)

    Article  Google Scholar 

  2. Wolff, E.: Anatomy of the Eye and Orbit, 4th edn. H.K. Lewis and Co., London (1954)

    Google Scholar 

  3. Rolando, M., Iester, M., Macrí, A., Calabria, G.: Low spatial-contrast sensitivity in dry eyes. Cornea 17(4), 376–379 (1998)

    Article  Google Scholar 

  4. Lemp, M.A., Baudouin, C., Baum, J., Dogru, M., Foulks, G.N., Kinoshita, S., Laibson, P., McCulley, J., Murube, J., Pfugfelder, S.C., Rolando, M., Toda, I.: The definition and classification of dry eye disease: report of the definition and classification subcommittee of the international dry eye workshop. Ocul. Surf. 5(2), 75–92 (2007)

    Article  Google Scholar 

  5. O’Brien, P.D., Collum, L.M.: Dry eye: diagnosis and current treatment strategies. Curr. Allergy Asthma Rep. 4(4), 314–319 (2004)

    Article  Google Scholar 

  6. Guillon, J.P., Guillon, M.: Tearscope Plus Clinical Handbook and Tearscope Plus Instructions. Keeler Ltd., Keeler Inc, Windsor, Broomall (1997)

    Google Scholar 

  7. Guillon, J.P.: Non-invasive tearscope plus routine for contact lens fitting. Contact Lens & Anterior Eye 21(Suppl 1), 31–40 (1998)

    Article  Google Scholar 

  8. Ramos, L., Penas, M., Remeseiro, B., Mosquera, A., Barreira, N., Yebra-Pimentel, E.: Texture and color analysis for the automatic classification of the eye lipid layer. In: Cabestany, J., Rojas, I., Joya, G. (eds.) IWANN 2011, Part II. LNCS, vol. 6692, pp. 66–73. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Remeseiro, B., Penas, M., Mosquera, A., Novo, J., Penedo, M.G., Yebra-Pimentel, E.: Statistical comparison of classifiers applied to the interferential tear film lipid layer automatic classification. Comput. Math. Methods Med. 2012, 1–10 (2012)

    Article  Google Scholar 

  10. Remeseiro, B., Penas, M., Barreira, N., Mosquera, A., Novo, J., García-Resúa, C.: Automatic classification of the interferential tear film lipid layer using colour texture analysis. Comput. Methods Programs Biomed. 111, 93–103 (2013)

    Article  Google Scholar 

  11. Remeseiro, B., Mosquera, A., Penedo, M.G., García-Resúa, C.: Tear film maps based on the lipid interference patterns. In: Proceedings of the 6th International Conference on Agents and Artificial Intelligence, pp. 732–739 (2014)

    Google Scholar 

  12. Remeseiro, B., Mosquera, A., Penedo, M.G.: CASDES: a computer-aided system to support dry eye diagnosis based on tear film maps. IEEE J. Biomed. Health Inform. (2015, in press)

    Google Scholar 

  13. Guyon, I.: Feature Extraction: Foundations and Applications, vol. 207. Springer, Heidelberg (2006)

    Google Scholar 

  14. Remeseiro, B., Bolon-Canedo, V., Peteiro-Barral, D., Alonso-Betanzos, A., Guijarro-Berdiñas, B., Mosquera, A., Penedo, M.G., Sánchez-Maroño, N.: A methodology for improving tear film lipid layer classification. IEEE J. Biomed. Health Inf. 18(4), 1485–1493 (2014)

    Article  Google Scholar 

  15. Bolón-Canedo, V., Porto-Díaz, I., Sánchez-Maroño, N., Alonso-Betanzos, A.: A framework for cost-based feature selection. Pattern Recogn. 47(7), 2481–2489 (2014)

    Article  Google Scholar 

  16. Bolón-Canedo, V., Remeseiro, B., Sánchez-Maroño, N., Alonso-Betanzos, A.: mC-ReliefF: an extension of relieff for cost-based feature selection. In: Proceedings of the 6th International Conference on Agents and Artificial Intelligence, pp. 42–51 (2014)

    Google Scholar 

  17. Rolando, M., Valente, C., Barabino, S.: New test to quantify lipid layer behavior in healthy subjects and patients with keratoconjunctivitis sicca. Cornea 27(8), 866–870 (2008)

    Article  Google Scholar 

  18. García-Resúa, C., Giráldez-Fernández, M.J., Penedo, M.G., Calvo, D., Penas, M., Yebra-Pimentel, E.: New software application for clarifying tear film lipid layer patterns. Cornea 32(4), 536–546 (2013)

    Article  Google Scholar 

  19. McLaren, K.: The development of the CIE 1976 (L*a*b) uniform colour-space and colour-difference formula. J. Soc. Dyers Colour. 92(9), 338–341 (1976)

    Article  Google Scholar 

  20. Haralick, R.M., Shanmugam, K., Dinstein, I.: Texture features for image classification. IEEE Trans. Syst. Man Cybern. 3, 610–621 (1973)

    Article  Google Scholar 

  21. Bradski, G.: The OpenCV Library. Dr. Dobb’s J. Softw. Tools (2000)

    Google Scholar 

  22. Kotsiantis, S.B.: Supervised machine learning: a review of classification techniques. Informatica 31, 249–268 (2007)

    MATH  MathSciNet  Google Scholar 

  23. Burges, C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2(2), 1–47 (1998)

    Article  Google Scholar 

  24. Yang, J., Honavar, V.: Feature subset selection using a genetic algorithm. IEEE Intell. Syst. Appl. 13(2), 44–49 (1998)

    Article  Google Scholar 

  25. Bahamonde, A., Bayón, G., Díez, J., Quevedo, J., Luaces, O., Del Coz, J., Alonso, J., Goyache, F.: Feature subset selection for learning preferences: a case study. In: Proceedings of the Twenty-first International Conference on Machine Learning, pp. 49–56. ACM (2004)

    Google Scholar 

  26. Haralick, R., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. SMC–3(6), 610–621 (1973)

    Article  Google Scholar 

  27. Feddema, J., Lee, C., Mitchell, O.: Weighted selection of image features for resolved rate visual feedback control. IEEE Trans. Robot. Autom. 7(1), 31–47 (1991)

    Article  Google Scholar 

  28. Friedman, J.: Regularized discriminant analysis. J. Am. Stat. Assoc. 84(405), 165–175 (1989)

    Article  Google Scholar 

  29. Wright, J., Yang, A., Ganesh, A., Sastry, S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)

    Article  Google Scholar 

  30. You, D., Hamsici, O., Martinez, A.: Kernel optimization in discriminant analysis. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 631–638 (2011)

    Article  Google Scholar 

  31. Xu, Z., Kusner, M., Weinberger, K., Chen, M., Chapelle, O.: Classifier cascades and trees for minimizing feature evaluation cost. J. Mach. Learn. Res. 15(1), 2113–2144 (2014)

    MATH  MathSciNet  Google Scholar 

  32. Huang, C., Wang, C.: A ga-based feature selection and parameters optimization for support vector machines. Expert Syst. Appl. 31(2), 231–240 (2006)

    Article  Google Scholar 

  33. Sivagaminathan, R., Ramakrishnan, S.: A hybrid approach for feature subset selection using neural networks and ant colony optimization. Expert Syst. Appl. 33(1), 49–60 (2007)

    Article  Google Scholar 

  34. Jiawei, H., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  35. Hall, M.A.: Correlation-based feature selection for machine learning. PhD thesis, The University of Waikato (1999)

    Google Scholar 

  36. Rich, E., Knight, K.: Artificial Intelligence. McGraw-Hill, New York (1991)

    Google Scholar 

  37. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005)

    Article  Google Scholar 

  38. Kononenko, I.: Estimating attributes: analysis and extensions of RELIEF. In: Bergadano, F., De Raedt, L. (eds.) ECML 1994. LNCS, vol. 784, pp. 171–182. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  39. Kira, K., Rendell, L.A.: A practical approach to feature selection. In: Proceedings of the Ninth International Workshop on Machine Learning, pp. 249–256. Morgan Kaufmann Publishers Inc. (1992)

    Google Scholar 

  40. VARPA: VOPTICAL\_I1, VARPA optical dataset annotated by optometrists from the Optometry Service, University of Santiago de Compostela (Spain) (2012). http://www.varpa.es/voptical_I1.html. Accessed July 2015

  41. Hochberg, Y., Tamhane, A.C.: Multiple Comparison Procedures. Wiley, Hoboken (1987)

    Book  MATH  Google Scholar 

  42. Teich, J.: Pareto-front exploration with uncertain objectives. In: Zitzler, E., Thiele, L., Deb, K., Coello, C.A.C., Corne, D. (eds.) Evolutionary Multi-criterion Optimization. LNCS, vol. 1993, pp. 314–328. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Acknowledgments

This research has been partially funded by the Secretaría de Estado de Investigación of the Spanish Government and FEDER funds of the European Union through the research projects TIN2012-37954 and PI14/02161; and by the Consellería de Industria of the Xunta de Galicia through the research projects GPC2013/065 and GRC2014/035.

We would also like to thank the Optometry Service of the University of Santiago de Compostela (Spain) for providing us with the annotated dataset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verónica Bolón-Canedo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bolón-Canedo, V., Remeseiro, B., Sánchez-Maroño, N., Alonso-Betanzos, A. (2015). Real-Time Tear Film Classification Through Cost-Based Feature Selection. In: Nguyen, N., Kowalczyk, R., Duval, B., van den Herik, J., Loiseau, S., Filipe, J. (eds) Transactions on Computational Collective Intelligence XX . Lecture Notes in Computer Science(), vol 9420. Springer, Cham. https://doi.org/10.1007/978-3-319-27543-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27543-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27542-0

  • Online ISBN: 978-3-319-27543-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics