Skip to main content

Markov-Chain Monte Carlo and the Potts Model

  • Chapter
  • First Online:
Basic Concepts in Computational Physics

Abstract

Markov-chain Monte-Carlo is revisited in this chapter with the emphasis on importance sampling. This method allows to reduce the variance of expectation values measured during a computer simulation. It is shown that Markov-chain Monte-Carlo techniques correspond indeed to importance sampling as long as detailed balance is obeyed. The Metropolis algorithm with its symmetric acceptance probability is one realization of Markov-chains with detailed balance. Another realization can be established by the Metropolis-Hastings algorithm which uses an asymmetric acceptance probability. It also obeys detailed balance and results in an improved variance over the symmetric Metropolis algorithm. In an example the Potts model is studied in a computer simulation based on the Metropolis algorithm. The results of this simulation prove that the particular phase transition properties of this model can be reproduced faithfully. More advanced sampling techniques are discussed in passing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Please note that it is common in the literature to refer even to Eq. (18.12) as a Metropolis-Hastings algorithm, despite the fact that here P p (S′ → S) = P p (S → S′).

  2. 2.

    We calculate the magnetization in a particular spin Q via

    $$\displaystyle{ \mathcal{M}_{Q}(\mathcal{C}) = \left (\sum _{i}\delta _{\sigma _{i},Q}\right )_{\mathcal{C}}\;. }$$
    (18.18)
  3. 3.

    This are regions in which all spins point in the same direction, the so-called Weiss domains [15].

References

  1. Norris, J.R.: Markov Chains. Cambridge Series in Statistical and Probabilistic. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  2. Kendall, W.S., Liang, F., Wang, J.S.: Markov Chain Monte Carlo: Innovations and Applications. Lecture Notes Series, vol. 7. Institute for Mathematical Sciences, National University of Singapore. World Scientific, Singapore (2005)

    Google Scholar 

  3. Modica, G., Poggiolini, L.: A First Course in Probability and Markov Chains. Wiley, New York (2012)

    Book  MATH  Google Scholar 

  4. Graham, C.: Markov Chains: Analytic and Monte Carlo Computations. Wiley, New York (2014)

    Book  MATH  Google Scholar 

  5. Potts, R.B.: Some generalized order-disorder transformations. Math. Proc. Camb. Philos. Soc. 48, 106–109 (1952). doi:10.1017/S0305004100027419

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Doucet, A., de Freitas, N., Gordon, N. (eds.): Sequential Monte Carlo Methods in Practice. Information Science and Statistics. Springer, Berlin/Heidelberg (2001)

    MATH  Google Scholar 

  7. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C++, 2nd edn. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  8. Kalos, M.H., Whitlock, P.A.: Monte Carlo Methods, 2nd edn. Wiley, New York (2008)

    Book  MATH  Google Scholar 

  9. von der Linden, W., Dose, V., von Toussaint, U.: Bayesian Probability Theory. Cambridge University Press, Cambridge (2014)

    Book  MATH  Google Scholar 

  10. Berg, B.A.: Markov Chain Monte Carlo Simulations and Their Statistical Analysis. World Scientific, Singapore (2004)

    Book  MATH  Google Scholar 

  11. German, S.: Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–741 (1984). doi:10.1109/TPAMI.1984.4767596

    Article  MATH  Google Scholar 

  12. Neal, R.M.: Slice sampling. Ann. Stat. 31, 705–767 (2003). doi:10.1214/aos/1056562461

    Article  MathSciNet  MATH  Google Scholar 

  13. Kardar, M., Berker, A.N.: Commensurate-incommensurate phase diagrams for overlayers from a helical potts model. Phys. Rev. Lett. 48, 1552–1555 (1982). doi:10.1103/PhysRevLett.48.1552

    Article  ADS  Google Scholar 

  14. Wu, F.Y.: The potts model. Rev. Mod. Phys. 54, 235–268 (1982). doi:10.1103/RevModPhys.54.235

    Article  ADS  MathSciNet  Google Scholar 

  15. White, R.M.: Quantum Theory of Magnetism, 3rd edn. Springer Series in Solid-State Sciences. Springer, Berlin/Heidelberg (2007)

    Book  Google Scholar 

  16. Swendsen, R.H., Wang, J.S.: Nonuniversal critical dynamics in monte carlo simulations. Phys. Rev. Lett. 58, 86–88 (1987). doi:10.1103/PhysRevLett.58.86

    Article  ADS  Google Scholar 

  17. Wolff, U.: Collective monte carlo updating for spin systems. Phys. Rev. Lett. 62, 361–364 (1989). doi:10.1103/PhysRevLett.62.361

    Article  ADS  Google Scholar 

  18. Evertz, H.G.: The loop algorithm. Adv. Phys. 52, 1–66 (2003). doi:10.1080/0001873021000049195

    Article  ADS  Google Scholar 

  19. Newman, M.E.J., Barkema, G.T.: Monte Carlo Methods in Statistical Physics. Clarendon Press, Oxford (1999)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stickler, B.A., Schachinger, E. (2016). Markov-Chain Monte Carlo and the Potts Model. In: Basic Concepts in Computational Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-27265-8_18

Download citation

Publish with us

Policies and ethics