Skip to main content

The Random Walk and Diffusion Theory

  • Chapter
  • First Online:
Basic Concepts in Computational Physics

Abstract

The random walk, a classical example of Markov-chains, is used as an entry-point for a more involved discussion of diffusion theory. After a complete analysis of the random walk, the Wiener process and its relation to Brownian motion is presented. In fact, the classic diffusion equation can be derived from the unbiased random walk within certain limits. Langevin’s stochastic differential equation is introduced and as a direct consequence the Ornstein-Uhlenbeck process follows. A more generalized description of the diffusion process is possible due to the introduction of a jump pdf which in turn allows the definition of a jump length pdf and a waiting time pdf. This extension appears to be necessary because many diffusive processes (not only in physics) cannot be understood on the level of Brownian motion. A consequence of this extension is the introduction of Lévy flights and of fractal time random walks on the stochastic level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    This assumption is known as the approximation of molecular chaos. In fact it represents the Markov approximation to the dynamics of a many particle system.

  2. 2.

    For instance, one can employ Fermi’s golden rule [6] to obtain this function on a quantum mechanical level. We already came across an expression of the form (17.3) on the right hand side of the master equation, see Sect. 16.3, Eq. (16.42). However, the collision integral of the Boltzmann equation is non-linear.

  3. 3.

    The function ρ(r, t) is referred to as a physical distribution function due to the normalization condition (17.6). This is in contrast to distribution functions we encountered so far within this book, which are normalized to unity.

  4. 4.

    This is one of Pólya’s random walk constants [1416].

  5. 5.

    In fact, it can be shown that W t is non-differentiable with probability one. This is the reason why it is defined as the formal derivative of W t . Let \(\varphi (t)\) be a test function and f(t) an arbitrary function which does not need to be differentiable with respect to t. Then the formal derivative \(\dot{f}(t)\) is defined by

    $$\displaystyle{ \int _{0}^{\infty }\mathrm{d}t\,\dot{f}(t)\varphi (t) = -\int _{ 0}^{\infty }\mathrm{d}t\,f(t)\dot{\varphi }(t)\;. }$$
  6. 6.

    A short introduction to fractional derivatives and integrals can be found in Appendix G.

References

  1. Glicksman, M.E.: Diffusion in Solids. Wiley, New York (1999)

    MATH  Google Scholar 

  2. Cussler, E.L.: Diffusion. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  3. Dubitzky, W., Wolkenhauer, O., Cho, K.H., Yokota, H. (eds.): Encyclopedia of Systems Biology, p. 1596. Springer, Berlin/Heidelberg (2013)

    Google Scholar 

  4. Tapiero, C.S.: Risk and Financial Management: Mathematical and Computational Methods. Wiley, New York (2004)

    Book  MATH  Google Scholar 

  5. Harris, S.: An Introduction to the Theory of the Boltzmann Equation. Dover, Mineola (2004)

    Google Scholar 

  6. Ballentine, L.E.: Quantum Mechanics. World Scientific, Hackensack (1998)

    Book  MATH  Google Scholar 

  7. Rudnik, J., Gaspari, G.: Elements of the Random Walk. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  8. Ibe, O.C.: Elements of Random Walk and Diffusion Processes. Wiley, New York (2013)

    Book  MATH  Google Scholar 

  9. Pekalski, A., Sznajd-Weron, K. (eds.): Anomalous Diffusion. Lecture Notes in Physics. Springer, Berlin/Heidelberg (1999)

    MATH  Google Scholar 

  10. Shlesinger, M.F., Zaslavsky, G.M., Frisch, U. (eds.): Lévy Flights and Related Topics in Physics. Lecture Notes in Physics. Springer, Berlin/Heidelberg (1995)

    MATH  Google Scholar 

  11. Norris, J.R.: Markov Chains. Cambridge Series in Statistical and Probabilistic. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  12. Modica, G., Poggiolini, L.: A First Course in Probability and Markov Chains. Wiley, New York (2012)

    Book  MATH  Google Scholar 

  13. Graham, C.: Markov Chains: Analytic and Monte Carlo Computations. Wiley, New York (2014)

    Book  MATH  Google Scholar 

  14. Pólya, G.: Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz. Math. Ann. 84, 149–160 (1921)

    Article  MathSciNet  MATH  Google Scholar 

  15. Finch, S.R. (ed.): Mathematical Constants, pp. 322–331. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  16. Weisstein, E.W.: Pólya’s random walk constants. http://mathworld.wolfram.com/PolyasRandomWalkConstants.html

  17. Risken, H., Frank, T.: The Fokker-Planck Equation. Springer Series in Synergetics. Springer, Berlin/Heidelberg (1996)

    Book  MATH  Google Scholar 

  18. Coffey, W.T., Kalmykov, Y.P.: The Langevin Equation, 3rd edn. World Scientific Series in Contemporary Chemical Physics: Volume 27. World Scientific, Hackensack (2012)

    Google Scholar 

  19. Breuer, H.P., Petruccione, F.: Open Quantum Systems, chap. 1 Clarendon Press, Oxford (2010)

    Google Scholar 

  20. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Metzler, R., Klafter, J.: The restaurant at the end of random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37, R161 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Brockmann, D., Hufnagl, L., Geisl, T.: The scaling laws of human travel. Nature (London) 439, 462–465 (2006). doi:10.1038/nature04292

    Article  ADS  Google Scholar 

  23. Tsallis, C.: Introduction to Nonextensive Statistical Mechanics. Springer, Berlin/Heidelberg (2009)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stickler, B.A., Schachinger, E. (2016). The Random Walk and Diffusion Theory. In: Basic Concepts in Computational Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-27265-8_17

Download citation

Publish with us

Policies and ethics