Skip to main content

Determination of CO2-Brine-Rock Interactions for Carbon Dioxide Sequestration Using SEM-EDS Methods

  • Chapter
  • First Online:
Book cover Geologic Carbon Sequestration

Abstract

The article constitutes a review of so far obtained results of the mineralogical changes occurs in reservoir and cap rocks due to the effect of carbon dioxide injection and storage in the presence of saline. The impact of CO2 was observed based on the determination of mineralogical changes by SEM-EDS method. In order to evaluate such interactions (changes) a numerous laboratory investigations were carried our using special designed devices for this purposes where samples of rocks were flooded in artificial brines and closed in autoclaves. Next the CO2 stream was driven. The investigations were performed at different conditions of pressure, temperature and period of time. To determine the changes in the individual minerals, via the scanning electron microscopy method, the results of mineralogical observations of the same sort of minerals in rock samples before and after the experiment were described. In all investigated cases the minerals precipitation and dissolution processes were observed as the result CO2-brine-rock interactions. The changes were detected on the following minerals: feldspars, micas, dolomite, calcite, anhydrite, kaolinite, pyrite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balashov VN, Guthrie GD, Hakala JA, Lopano Ch L, Rimstidt JD, Brantley SL (2013) Predictive modeling of CO2 sequestration in deep saline sandstone reservoirs: impacts of geochemical kinetics. Appl Geochem 30:41–56

    Article  Google Scholar 

  2. Bateman K, Rochelle C, Lacinska A, Wagner D (2011) CO2-porewater-rock reactions – large-scale column experiment (Big Rig II). Energy Procedia 4:4937–4944

    Article  Google Scholar 

  3. Bortun AI, Bortun LN, Khainakov SA, Clearfield A (1998) Ion exchange properties of the sodium phlogopite and biotite. Solvent Extr Ion Exch 16(4):1067–1090

    Article  Google Scholar 

  4. Calabrese M, Blunt MJ (2005) Simulation of physical-chemical processes during carbon dioxide sequestration in geological structures. Paper SPE 95820 presented at SPE Annual technical conference and exhibition, Dallas, Texas, USA

    Google Scholar 

  5. Cantucci B, Montegrossi G, Vaselli O, Tassi F, Quattrocchi F, Perkins EH (2009) Geochemical modeling of CO2 storage in deep reservoirs: the Weyburn Project (Canada) case study. Chem Geol 265(1-2):181–197. doi:10.1016/j.chemgeo.2008.12.029

    Article  Google Scholar 

  6. Chopping C, Kaszuba JP (2012) Supercritical carbon dioxide–brine–rock reactions in the Madison Limestone of Southwest Wyoming: an experimental investigation of a sulfur-rich natural carbon dioxide reservoir. Chem Geol 322–323:223–236

    Article  Google Scholar 

  7. Cook PJ (1999) Sustainability and nonrenewable resources. Environ Geosci 6(4):185–190

    Article  Google Scholar 

  8. Czernichowski-Lauriol I, Rochelle C, Gaus I, Azaroua lM, Pearce J, Durst P (2006) Geochemical interactions between CO2, pore-water and reservoir rock. Adv Geolog StorageCarbonDioxide 65:157–174

    Article  Google Scholar 

  9. Fischer S, Liebscher A, Wandrey M, The CO2SINK Group (2010) CO2–brine–rock interaction — first results of long-term exposure experiments at in situ P–T conditions of the Ketzin CO2 reservoir. Chem Erde Geochem 70(S3):155–164

    Google Scholar 

  10. Gaus I (2010) Role and impact of CO2-rock interactions during CO2 storage in sedimentary rocks. Int J Greenh Gas Con l4:73–89

    Article  Google Scholar 

  11. Hitchon B, Gunter WD, Gentzis T, Bailey RT (1999) Sedimentary basins and greenhouse gases: a serendipitous association. Energy Conserv Manage 40:825–843

    Article  Google Scholar 

  12. Hu Y, Ray JR, Jun YS (2013) Na+, Ca2+, and Mg2+ in brines affect supercritical CO2-brine-biotite interactions: ion exchange, biotite dissolution, and illite precipitation. Environ Sci Technol 47(1):191–197

    Article  Google Scholar 

  13. Hu Y, Ray JR, Jun Y (2011) Biotite-brine interactions under acidic hydrothermal conditions: fibrous illite, goethite, and kaolinite formation and biotite surface cracking. Environ Sci Technol 45:6175–6180

    Article  Google Scholar 

  14. Huq F, Haderlein SB, Cirpka OA, Nowak M, Blum P, Grathwohl P (2015) Flow-through experiments on water–rock interactions in a sandstone caused by CO2 injection at pressures and temperatures mimicking reservoir conditions. Appl Geochem 58:136–146

    Article  Google Scholar 

  15. IEA – International Energy Agency (2012) CO2 emissions from fuel combustion highlights, 2012th edn. OECD/IEA, Paris

    Google Scholar 

  16. Ikeda T (2007) Hydration of alkali ions from first principles molecular dynamics revisited. J Chem Phys 126:034501

    Article  Google Scholar 

  17. Ikeda T (2007) Hydration properties of magnesium and calcium ions from constrained first principles molecular dynamics. J Chem Phys 127:074503

    Article  Google Scholar 

  18. Kampman N, Bickle M, Becker J, Assayag N, Chapman H (2009) Feldspar dissolution kinetics and Gibbs free energy dependence in a CO2-enriched groundwater system, Green River. Utah Earth Planet Sci Lett 284:473–488

    Article  Google Scholar 

  19. Kaszuba JP, Janecky DR (2013) Geochemical impacts of sequestering carbon dioxide in Brine Formations. In: Sundquist E, McPherson B (eds) Carbon sequestration and its role in the global carbon cycle, Geophysical monograph 183. American Geophysical Union, Washington, DC

    Google Scholar 

  20. Kaszuba JP, Janecky DR, Snow MG (2003) Carbon dioxide reaction processes in a model brine aquifer at 200 °C and 200 bars: implications for geologic sequestration of carbon. Appl Geochem 18(7):1065–1080

    Article  Google Scholar 

  21. Ketzer JM, Iglesias R, Einloft S, Dullius J, Ligabue R, de Lima V (2009) Water–rock– CO2 interactions in saline aquifers aimed for carbon dioxide storage: experimental and numerical modeling studies of the Rio Bonito Formation (Permian), southern Brazil. Appl Geochem 24:760–767

    Article  Google Scholar 

  22. Kjøller C, Weibel R, Bateman K, Laier R, Nielsen LH, Frykman P, Springer N (2011) Geochemical impacts of CO2 storage in saline aquifers with various mineralogy-results from laboratory experiments and reactive geochemical modeling. Energy Procedia 4:4724–4731

    Article  Google Scholar 

  23. Labus K, Tarkowski R, Wdowin M (2010) Assessment of CO2 sequestration capacity based on hydrogeochemical model of water-rock-gas interactions in the potential storage site within the Bełchatów area (Poland). Gosp Sur Min- Min Res Manage 26(2):69–84

    Google Scholar 

  24. Labus K, Tarkowski R, Wdowin M (2015) Modeling gas–rock–water interactions in carbon dioxide storage capacity assessment: a case study of Jurassic sandstones in Poland. Int J Environ Sci Technol 12(8):2493–2502. doi:10.1007/s13762-014-0652-6

    Article  Google Scholar 

  25. Liu F, Lu P, Griffith C, Hedges SW, Soong Y, Hellevang H, Zhu C (2012) CO2–brine–caprock interaction: reactivity experiments on Eau Claire shale and a review of relevant literature. Inter J Greenh Gas Con 7:153–167

    Article  Google Scholar 

  26. Luo X, Yang W, Li R, Liping G (2001) Effects of pH on the solubility of the feldspar and the development of secondary porosity. Bull Miner Petrol Geochem 02:103–107

    Google Scholar 

  27. Mandalaparty P (2012) Reaction chemistry in carbon dioxide sequestration. University of Utah, Utah, 164 pp

    Google Scholar 

  28. Marini L (2007) Geological sequestration of carbon dioxide: thermodynamics, kinetics and reaction path modeling. Elsevier XV, Amsterdam, 453 pp

    Google Scholar 

  29. Mohamed I, He J, Nasr‐El‐Din HA (2013) Effect of brine composition on CO2/limestone rock interactions during CO2 sequestration. J Pet Sci Res 2(1):14–26

    Google Scholar 

  30. Parry WT, Forster CB, Evans JP, Bowen BB, Chan MA (2007) Geochemistry of CO2 sequestration in the Jurassic Navajo Sandstone, Colorado Plateau, Utah. Environ Geosci 14(2):91–109

    Article  Google Scholar 

  31. Plewa M, Plewa S (1992) Petrofizyka. Wydawnictwa Geologiczne, Warszawa

    Google Scholar 

  32. Rimmelé G, Barlet-Gouédard V, Renard F (2010) Evolution of the petrophysical and mineralogical properties of two reservoir rocks under thermodynamic conditions relevant for CO2 geological storage at 3 km depth. Oil Gas Sci Technol Rev IFP 65(4):565–580. doi:10.2516/ogst/2009071

    Article  Google Scholar 

  33. Rochelle CA, Czernichowski-Lauriol I, Milodowski AE (2004) The impact of chemical reactions on CO2 storage in geological formations: a brief review, Spec publ. 233. Geological Society, London, pp 87–106

    Google Scholar 

  34. Shukla R, Ranjith P, Haque A, Choi X (2010) A review of studies on CO2 sequestration and caprock integrity. Fuel 89(10):2651–2664

    Article  Google Scholar 

  35. Span R, Wagner W (1996) A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. J Phys Chem Ref Data 25:1509–1596

    Article  Google Scholar 

  36. Tarkowski R, Manecki M (red.) (2009) Badania oddziaływania CO2 na mezozoiczne skały zbiornikowe w celu określenia ich przydatności do geologicznej sekwestracji dwutlenku węgla. Wyd. IGSMiE PAN, Kraków, 114 pp

    Google Scholar 

  37. Tarkowski R, Wdowin M (2011) Petrophysical and mineralogical research on the influence of CO2 injection on Mesozoic Reservoir and Caprocks from the Polish Lowlands. Oil Gas Sci Technol Rev IFP Energies nouvelles 66(1):137–150

    Article  Google Scholar 

  38. Trémosa J, Castillo C, Vong CQ, Kervévan C, Lassin A, Audigane P (2014) Long-term assessment of geochemical reactivity of CO2 storage in highly saline aquifers: application to Ketzin, in Salah and Snøhvit storage sites. Int J Greenh Gas Con 20:2–26

    Article  Google Scholar 

  39. Van Pham TH, Aagaard P, Hellevang H (2012) On the potential for CO2 mineral storage in continental flood basalts – PHREEQC batch- and 1D diffusion–reaction simulations. Geochem Trans 13(5):2–12. doi:10.1186/1467-4866-13-5

    Google Scholar 

  40. Vishal V, Singh TN, Ranjith PG (2015) Influence of sorption time in CO2-ECBM process in Indian coals using coupled numerical simulation. Fuel 139:51–58

    Article  Google Scholar 

  41. Wang T, Wang H, Zhang F, Xu T (2013) Simulation of CO2–water–rock interactions on geologic CO2 sequestration under geological conditions of China. Mar Pollut Bull 76(1–2):307–314

    Article  Google Scholar 

  42. Wdowin M (2015) The CO2-Brine-rock interactions as a result of carbon dioxide sequestration, In: Pant KK, Sinha S, Bajpai S, Govil JN [red.] (eds) Advances in petroleum engineering II: petrochemical. Studium Press LLC, USA, pp 155–178

    Google Scholar 

  43. Wdowin M, Tarkowski R, Franus W (2014) Determination of changes in the reservoir and cap rocks of the Chabowo Anticline caused by CO2–brine–rock interactions. Int J Coal Geol 130:79–88

    Article  Google Scholar 

  44. Wigand M, Carey JW, Schütt H, Spangenberg E, Erzinger J (2008) Geochemical effects of CO2 sequestration in sandstones under simulated in situ conditions of deep saline aquifers. Appl Geochem 23:2735–2745

    Article  Google Scholar 

  45. Xu T, Sonnenthal E, Spycher NF, Pruess K (2004) TOUGHREACT user’s guide: a simulation program for non-isothermal multiphase reactive geochemical transport in variable saturated geologic media. Lawrence Berkeley National Laboratory LBNL-55460, Berkeley

    Google Scholar 

  46. Zhu H, Qu X, Liu L, Yu Z, Zhang L, Tang H (2011) Study on interaction between the feldspar and CO2 fluid. J Jilin Univ (Earth Sci Ed) 41(03):697–706

    Google Scholar 

Download references

Acknowledgements

This work was financed from the statutory work of The Mineral and Energy Economy Research Institute of the Polish Academy of Sciences

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Wdowin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wdowin, M., Franus, W. (2016). Determination of CO2-Brine-Rock Interactions for Carbon Dioxide Sequestration Using SEM-EDS Methods. In: Vishal, V., Singh, T. (eds) Geologic Carbon Sequestration. Springer, Cham. https://doi.org/10.1007/978-3-319-27019-7_7

Download citation

Publish with us

Policies and ethics