Skip to main content

CO2 Storage Capacity Estimates for a Norwegian and a Swedish Aquifer Using Different Approaches – From Theoretical Volumes, Basin Modelling to Reservoir Models

  • Chapter
  • First Online:
Geologic Carbon Sequestration

Abstract

Open dipping aquifers might offer a unique possibility to store huge quantities of carbon dioxide. Many different modelling approaches have been used to quantify possible storage capacities often giving very diverse results. In this study, we applied three different methods to calculate and model theoretical volumes, structural trapping volumes using a basin modelling tool and capacities obtained from dynamic reservoir simulations. We tested end-member scenarios for different critical parameters. The results for two stratigraphic confined open/semi-closed dipping saline aquifers, the Garn Formation (Norwegian Sea, Norway) and the Faludden sandstone (Baltic Sea, Sweden) show broad variations. For the Garn Formation CO2 storage capacities vary from 2.0 to 8.4 Gt. Taking into accounts all results, we estimated a representative storage capacity ranging between 2.0 and 3.5 Gt. In the case of the Faludden sandstone the different modelled scenarios give a spread from 10 to 836 Mt and a representative capacity of 250–435 Mt was defined. We will show and discuss how the different estimates are calculated, how they are related to each other and finally exclude unreliable results. Furthermore we compare our results with published data from the same areas. This will demonstrate the complexity and difficulty of a direct comparison of geological CO2 storage estimates and pinpoint to the need for a general strategy to compare modelling results for geological CO2 storage estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IEA (2012) Energy technology perspectives 2012 pathways to clean energy system, Paris, France, OECD/IEA, 690 p

    Google Scholar 

  2. Holloway S, Heederik JP, van der Meer LGH (1996) The underground disposal of carbon dioxide – summary report. BGS report for JOULE II project CT92-0031, 21 p

    Google Scholar 

  3. Christensen NP, Holloway S (2004) The GESTCO project – summery report, 2nd edn. EU 5th framework programme for eesearch & development ENK6-CT-1999-00010, 32 p

    Google Scholar 

  4. Lindeberg E, Vuillaume JF, Ghaderi A (2009) Determination of the CO2 storage capacity of the Utsira formation. Energy Procedia 1(1):2777–2784

    Article  Google Scholar 

  5. Halland EK, Mujezinovic J, Riis F (2014) CO2 storage Atlas Norwegian continental shelf, Stavanger, Norway, NPD publications, 163 p

    Google Scholar 

  6. Sopher D, Juhlin C, Erlström M (2014) A probabilistic assessment of the effective CO2 storage capacity within the Swedish sector of the Baltic Basin. Int J Greenh Gas Control 30:148–170

    Article  Google Scholar 

  7. Vernon R, O’Neil N, Pasquali R, Nieminen M (2013) Screening of prospective sites for geological storage of CO2 in the Southern Baltic Sea, Espoo 2013, VTT Technology, 101 p

    Google Scholar 

  8. Bachu S, Bonijoy D, Bradshaw J (2007) CO2 storage capacity estimation: methodology and gaps. Int J Greenh Gas Control 1:430–443

    Article  Google Scholar 

  9. US Department of Energy (2007) Carbon sequestration Atlas of United States and Canada, p 1

    Google Scholar 

  10. Bachu S (2015) Review of CO2 storage efficiency in deep saline aquifers. Int J Greenh Gas Control 40:188–202

    Article  Google Scholar 

  11. Sylta Ø (2004) Hydrocarbon migration modelling and exploration risk. NTNU, Trondheim

    Google Scholar 

  12. Lothe AE, Emmel B, Grøver A et al (2014) CO2 storage modelling and capacity estimation for the Trøndelag platform offshore Norway – using a Basin modelling approach. Energy Procedia 63:3648–3657

    Article  Google Scholar 

  13. Grøver A, Rinna J, Lothe AE et al (2013) How and when could basin modelling approaches be useful for CO2 storage assessment? The 7th Trondheim CCS conference, 4–5 June 2013

    Google Scholar 

  14. ECLIPSE 100 (2014) Eclipse reference manual. Schlumberger Information Solutions, 2014.1, Houston

    Google Scholar 

  15. Dalland AG, Worsley D, Ofstad K (1988) A lithostratigraphic scheme for the Mesozoic and Cenozoic succession offshore mid-and northern Norway. Norw Petr Directorate, p 65

    Google Scholar 

  16. Oljeprospektering (OPAB) AB (1976) Baltic sea, exploration activities 1971─1976, geology and petroleum prospects. Oljeprospektering AB, Exploration Department, 70 p

    Google Scholar 

  17. Mortensen GM (2014) CO2 storage atlas for Sweden – a contribution to the Nordic Competence Centre for CCS, NORDICCS. 31st Nordic geological winter meeting, Lund

    Google Scholar 

  18. Ehrenberg SN (1990) Relationship between diagenesis and reservoir quality in sandstones of the Garn Formation Haltenbanken, mid-Norwegian continental shelf. AAPG 74:1538–1558

    Article  Google Scholar 

  19. Brangulis AP, Kanev SV, Margulis LS et al (1993) Geology and hydrocarbon prospects of the Paleozoic in the Baltic region. In: Parker JR (ed) Petr of Northwest Europe. Proceedings of the 4th conference, The Geol Society, London, pp 651–656

    Google Scholar 

  20. Erlström M, Frederiksson D, Juhojuntti N et al (2011) Lagring av koldioxid i berggrunden – krav, förutsättningar och möjligheter. SGU, Rapporter och meddelanden 131

    Google Scholar 

  21. The Baltic Sea Hydrographic Commission (2013) Baltic Sea Bathymetry Database v 0.9.3

    Google Scholar 

  22. Bergmo PE, Polak S, Aagaard P et al (2013) Evaluation of CO2 storage potential in Skagerrak. Energy Procedia 37:4863–4871

    Article  Google Scholar 

  23. Zheng L, Apps JA, Zhang Y (2009) On mobilization of lead and arsenic in groundwater in reponse to CO2 leakage from deep geological storage. Chem Geol 268:281–297

    Article  Google Scholar 

  24. Zoback MD, Gorelick SM (2012) Earthquake trigging and large-scale geologic storage of carbon dioxide. In: Proceeding in the National Academy of Sciences. www.pnas.org/cgi/doi/10.1073/pnas.1202473109

    Google Scholar 

  25. Kikkawa T, Sato T, Kita J et al (2006) Acute toxicity of temporally varying seawater CO2 conditions on juveniles of Japanese sillago (Sillago japonica). Mar Pollut Bull 52:621–625

    Article  Google Scholar 

  26. Knipe RJ (1992) Faulting processes and fault seal. In: Larsen RM et al (eds) Structural and tectonic modelling and its application to petroleum geology, NPF special publication 1. Elsevier, Stavanger, pp 325–342

    Chapter  Google Scholar 

  27. Sperrevik S, Gillespie PA, Fisher QJ et al (2002) Empirical estimation of fault rock properties. In: Koestler AG, Hunsdale R (eds) Hydrocarbon seal quantification, NPF special publication 11. Elsevier, Burlington, pp 109–125

    Chapter  Google Scholar 

  28. Bøe R, Magnus C, Osmundsen PT et al (2002) CO2 point sources and subsurface storage capacities for CO2 in aquifers in Norway. NGU report 2002.010

    Google Scholar 

Download references

Acknowledgments

The work has been supported by the NORDICCS Centre, as part of the Nordic Innovation and Top-level Research Initiative CO2 Capture and Storage Program (Project number: 11029). Statoil is thanked for providing the data from the Trøndelag Platform.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ane E. Lothe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lothe, A.E., Bergmo, P.E.S., Emmel, B.U., Mortensen, G.M. (2016). CO2 Storage Capacity Estimates for a Norwegian and a Swedish Aquifer Using Different Approaches – From Theoretical Volumes, Basin Modelling to Reservoir Models. In: Vishal, V., Singh, T. (eds) Geologic Carbon Sequestration. Springer, Cham. https://doi.org/10.1007/978-3-319-27019-7_6

Download citation

Publish with us

Policies and ethics