Skip to main content

Monitoring of CO2 Plume Migration in Deep Saline Formations with Kinetic Interface Sensitive Tracers (A Numerical Modelling Study for the Laboratory)

  • Chapter
  • First Online:
Book cover Geologic Carbon Sequestration

Abstract

Monitoring CO2 plume migration in deep saline aquifers is essential for improving the design and operation of the storage. Therefore, the development of new efficient monitoring techniques is an on-going area of research. Tracer techniques have been extensively used to study the movement of gas and liquids in porous media systems. Their main advantage is that they can provide direct information about the hydraulic, transport and reactive processes and parameters of the reservoir. Kinetic interface sensitive (KIS) tracers represent a novel class of reactive tracers for quantifying the interfacial area between CO2 and brine and its development with time. The theoretical development of KIS tracers is described, including the conceptual and mathematical models. Through numerical modelling, a sensitivity analysis with regard to the key flow and transport parameters of CO2 storage reservoir is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alnes H, Eiken O, Nooner S, Sasagawa G, Stenvold T, Zumberge M (2011) Results from Sleipner gravity monitoring: updated density and temperature. Energy Procedia 4:5504–5511

    Article  Google Scholar 

  2. Annable MD, Rao PSC, Hatfield K, Graham WD, Wood AL, Enfield CG (1998) Partitioning tracers for measuring residual NAPL: field-scale test results. J Environ Eng 124:498–503

    Article  Google Scholar 

  3. Arts R, Eiken O, Chadwick A, Zweigel P, van der Meer L, Zinszner B (2004) Monitoring of CO2 injected at Sleipner using time-lapse seismic data. Energy 29:1383–1392

    Article  Google Scholar 

  4. Assayag N, Matter J, Ader M, Goldberg D, Agrinier P (2009) Water–rock inter-actions during a CO2 injection field-test: implications on host rock dissolution and alteration effects. Chem Geol 265:227–235

    Article  Google Scholar 

  5. Bachu S (2003) Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change. Environ Geol 44:277–289. doi:10.1007/s00254-003-0762-9

    Article  Google Scholar 

  6. Brooks RH, Corey AT (1964) Hydraulic properties of porous media. Hydrology papers, vol 3. Colorado State University, Fort Collins

    Google Scholar 

  7. Bear J (1972) Dynamics of fluids in porous media. Elsevier Scientific Publishing, New York

    Google Scholar 

  8. Behrens H, Ghergut J, Bensabat J, Niemi A, Sauter M (2014) Merging single- and inter-well tracer tests into one forced-gradient dipole test, at the Heletz site within the MUSTANG project. Energy Procedia 59:249–255

    Article  Google Scholar 

  9. Boreham C, Underschultz J, Stalker L, Kirste D, Freifeld B, Jenkins C, Ennis-King J (2011) Monitoring of CO2 storage in a depleted natural gas reservoir: gas geochemistry from the CO2CRC Otway project, Australia. Int J Greenhouse Gas Control 5:1039–1054

    Article  Google Scholar 

  10. Carcione JM, Gei D, Picotti S, Michelini A (2012) Cross-hole electromagnetic and seismic modeling for CO2 detection and monitoring in a saline aquifer. J Pet Sci Eng 100:162–172. doi:10.1016/j.petrol.2012.03.018

    Article  Google Scholar 

  11. Celia MA, Nordbotten JM (2009) Practical modeling approaches for geological storage of carbon dioxide. Ground Water 47:627–638. doi:10.1111/j.1745-6584.2009.00590.x

    Article  Google Scholar 

  12. Cook P, Causebrook R, Gale J, Michel K, Watson M (2014) What have we learned from small-scale injection projects. Energy Procedia 63(0):6129–6140. http://dx.doi.org/10.1016/j.egypro.2014.11.645

    Google Scholar 

  13. Davis BM, Istok JD, Semprini L (2002) Push–pull partitioning tracer tests using radon-222 to quantify non-aqueous phase liquid contamination. J Contam Hydrol 58:129–146

    Article  Google Scholar 

  14. Dwarakanath V, Pope GA (1998) New approach for estimating alcohol partition coefficients between non-aqueous phase liquids and water. Environ Sci Technol 32:1662–1666

    Article  Google Scholar 

  15. Freifeld BM, Trautz RC, Kharaka YK, Phelps TJ, Myer LR, Hovorka SD, Collins DJ (2005) The U‐tube: a novel system for acquiring borehole fluid samples from a deep geologic CO2 sequestration experiment. J Geophys Res Solid Earth (1978–2012): 110(B10)

    Google Scholar 

  16. Helmig R (1997) Multiphase flow and transport processes in the subsurface: a contribution to the modelling of hydro systems, 1st edn. Springer, Berlin/New York

    Book  Google Scholar 

  17. Hillebrand O, Nödler K, Licha T, Sauter M, Geyer T (2012) Identification of the attenuation potential of a karst aquifer by an artificial dual tracer experiment with caffeine. Water Res 46:5381–5388

    Article  Google Scholar 

  18. Hunkeler D, Hoehn E, Höhener P, Zeyer J (1997) 222 Rn as a partitioning tracer to detect diesel fuel contamination in aquifers: laboratory study and field observations. Environ Sci Technol 31:3180–3187

    Article  Google Scholar 

  19. IEA (2008) CO2 capture and storage – a key carbon abatement option. IEA Publications, Paris

    Google Scholar 

  20. IPCC (2005) IPCC special report on carbon dioxide capture and storage. In: Metz B, Davidson O, de Coninck HC, Loos M, Meyer LA (eds) Prepared by working group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  21. Istok JD, Humphrey MD, Schroth MR, Hyman MR, O’Reilly KT (1997) Single-well, push–pull test for in situ determination of microbial activities. Ground Water 35:619–631

    Article  Google Scholar 

  22. Langmuir I (1915) Chemical reactions at low pressures. J Am Chem Soc 37:1139–1167. doi:10.1021/ja02170a017

    Article  Google Scholar 

  23. JafarGandomi A, Curtis A (2011) Detectability of petrophysical properties of subsurface CO2 – saturated aquifer reservoirs using surface geophysical methods. Lead Edge 30:1112–1121

    Article  Google Scholar 

  24. Jyoti A (2015) Numerical simulations of fluid-fluid interface sensitive tracers in two-phase porous media systems. Master thesis, University of Goettingen, Göttingen

    Google Scholar 

  25. Ketelaar VBH (2009) Satellite radar interferometry, remote sensing and digital image processing. Springer, Dordrecht

    Book  Google Scholar 

  26. Kiessling D, Schmidt-Hattenberger C, Schuett H, Schilling F, Krueger K, Schoebel B, Danckwardt E, Kummerow J, CO2 SINK Group (2010) Geoelectrical methods for monitoring geological CO2 storage: first results from cross-hole and surface-downhole measurements from the CO2 SINK test site at Ketzin (Germany). Int J Greenhouse Gas Control 4:816–826

    Article  Google Scholar 

  27. Kim H, Suresh P, Rao PSC, Annable MD (1999) Consistency of the interfacial tracer technique: experimental evaluation. J Contam Hydrol 40:79–94

    Article  Google Scholar 

  28. Kopp A, Class H, Helmig R (2009) Investigations on CO2 storage capacity in saline aquifers: Part 1. Dimensional analysis of flow processes and reservoir characteristics. Int J Greenhouse Gas Control 3:263–276. doi:10.1016/j.ijggc.2008.10.002

    Article  Google Scholar 

  29. LaForce T, Ennis-King J, Boreham C, Paterson L (2014) Residual CO2 saturation estimate using noble gas tracers in a single-well field test: the CO2CRC Otway project. Int J Greenhouse Gas Control 26:9–21. doi:10.1016/j.ijggc.2014.04.009

    Article  Google Scholar 

  30. Matter JM, Takahashi T, Goldberg D (2007) Experimental evaluation of in situ CO2–water–rock reactions during CO2 injection in basaltic rocks: implications for geological CO2 sequestration. Geochem Geophys Geosyst 8, Q02001

    Google Scholar 

  31. McCallum SD, Riestenberg DE, Cole DR, Freifeld BM, Trautz RC, Hovorka SD, Phelps TJ (2005) Monitoring geologically sequestered CO2 during the Frio Brine pilot test using perfluorocarbon tracers. In: Proceedings of the 4th annual conference on carbon capture and sequestration DOE/NETL, Alexandria

    Google Scholar 

  32. Myers M, Stalker L, Pejcic B, Ross A (2013) Tracers – past, present and future applications in CO2 geosequestration. Appl Geochem 30:125–135

    Article  Google Scholar 

  33. Myers M, Stalker L, Ross A, Dyt C, Ho K-B (2012) Method for the determination of residual carbon dioxide saturation using reactive ester tracers. Appl Geochem 27:2148–2156

    Article  Google Scholar 

  34. Nottebohm M, Licha T, Sauter M (2012) Tracer design for tracking thermal fronts in geothermal reservoirs. Geothermics 43:37–44

    Article  Google Scholar 

  35. Oldenburg CM, Bryant SL, Nicot J-P (2009) Certification framework based on effective trapping for geologic carbon sequestration. Int J Greenhouse Gas Control 3:444–457. doi:10.1016/j.ijggc.2009.02.009

    Article  Google Scholar 

  36. Onuma T, Ohkawa S (2009) Detection of surface deformation related with CO2 injection by DInSAR at In Salah, Algeria. Energy Procedia, Greenhouse Gas Control Technologies 9. In: Proceedings of the 9th international conference on Greenhouse gas control technologies (GHGT-9), Washington DC, USA, 16–20 November 2008, 2177–2184. doi:10.1016/j.egypro.2009.01.283

    Google Scholar 

  37. Pires JCM, Martins FG, Alvim-Ferraz MCM, Simões M (2011) Recent developments on carbon capture and storage: an overview. Chem Eng Res Des 89:1446–1460. doi:10.1016/j.cherd.2011.01.028, Special Issue on Carbon Capture & Storage

    Article  Google Scholar 

  38. Rao PSC, Annable MD, Kim H (2000) NAPL source zone characterization and remediation technology performance assessment: recent developments and applications of tracer techniques. J Contam Hydrol 45:63–78

    Article  Google Scholar 

  39. Rasmusson K, Rasmusson M, Fagerlund F, Bensabat J, Tsang Y, Niemi A (2014) Analysis of alternative push–pull-test-designs for determining in situ residual trapping of carbon dioxide. Int J Greenhouse Gas Control 27:155–168. doi:10.1016/j.ijggc.2014.05.008

    Article  Google Scholar 

  40. Rütters H, CGS Europe partners (2013) State of play on CO2 geological storage in 28 European countries. CGS Europe report No. D2.10

    Google Scholar 

  41. Saripalli KP, Kim H, Rao PSC, Annable MD (1997) Measurement of specific fluid-fluid interfacial areas of immiscible fluids in porous media. Environ Sci Technol 31:932–936

    Article  Google Scholar 

  42. Saripalli KP, Rao PSC, Annable MD (1998) Determination of specific NAPL–water interfacial areas of residual NAPLs in porous media using the interfacial tracers technique. J Contam Hydrol 30:375–391

    Article  Google Scholar 

  43. Sayers C, Wilson T (2010) An introduction to this special section on CO2 sequestration. Lead Edge 29:148–149

    Article  Google Scholar 

  44. Schaffer M, Maier F, Licha T, Sauter M (2013) A new generation of tracers for the characterization of interfacial areas during supercritical carbon dioxide injections into deep saline aquifers: kinetic interface-sensitive tracers (KIS tracer). Int J Greenhouse Gas Control 14:200–208. doi:10.1016/j.ijggc.2013.01.020

    Article  Google Scholar 

  45. Schaffer M (2013b) On the possibility of using organic molecules in the characterization of subsurface processes. PhD thesis, University of Goettingen, Goettingen, Germany

    Google Scholar 

  46. Strazisar BR, Wells AW, Diehl JR, Hammack RW, Veloski GA (2009) Near-surface monitoring for the ZERT shallow CO2 injection project. Int J Greenhouse Gas Control 3:736–744

    Article  Google Scholar 

  47. Streich R, Becken M, Matzander U, Ritter O (2011) Strategies for land-based controlled-source electromagnetic surveying in high-noise regions. Lead Edge 30:1174–1181

    Article  Google Scholar 

  48. Tatomir A, Maier F, Schaffer M, Licha T, Sauter M (2013) Modelling of kinetic interface sensitive tracers for two-phase systems. In: Hou MZ, Xie H, Were P (eds) Clean energy systems in the subsurface: production, storage and conversion, Springer series in geomechanics and geoengineering. Springer, Berlin/Heidelberg, pp 65–74

    Chapter  Google Scholar 

  49. Tatomir A, Jyoti A, Maier F, Sauter M (2014) Modelling of kinetic interface sensitive tracers for two phase immiscible flow in porous media with COMSOL Multiphysics®. In: COMSOL conference, Cambridge, UK

    Google Scholar 

  50. Tatomir AB, Ghergut I, Sauter M (2016) Tracer methods for characterization and monitoring of the CO2 storage in geological formations. In: Niemi A, Bear J, Bensabat J (eds) Geological storage of CO2 in deep saline formations. Springer (to appear in 2016)

    Google Scholar 

  51. Tatomir AB, Schaffer M, Kissinger A, Hommel J, Nuske P, Licha T, Helmig R, Sauter M (2015) Novel approach for modeling kinetic interface-sensitive (KIS) tracers with respect to time-dependent interfacial area change for the optimization of supercritical carbon dioxide injection into deep saline aquifers. Int J Greenhouse Gas Control 33:145–153. doi:10.1016/j.ijggc.2014.11.020

    Article  Google Scholar 

  52. Tomich JF, Dalton RL, Deans HA, Shallenberger LK (1973) Single-well tracer method to measure residual oil saturation. J Pet Technol 25

    Google Scholar 

  53. Underschultz J, Boreham C, Dance T, Stalker L, Freifeld B, Kirste D, Ennis-King J (2011) CO2 storage in a depleted gas field: an overview of the CO2CRC Otway project and initial results. Int J Greenhouse Gas Control 5:922–932

    Article  Google Scholar 

  54. Vandeweijer V, van der Meer B, Hofstee C, Mulders F, D’Hoore D, Graven H (2011) Monitoring the CO2 injection site: K12-B. Energy Procedia 4:5471–5478

    Article  Google Scholar 

  55. Vulava VM, Perry EB, Romanek CS, Seaman JC (2002) Dissolved gases as partitioning tracers for determination of hydrogeological parameters. Environ Sci Technol 36:254–262

    Article  Google Scholar 

  56. Wells AW, Diehl JR, Bromhal G, Strazisar BR, Wilson TH, White CM (2007) The use of tracers to assess leakage from the sequestration of CO2 in a depleted oil reservoir, New Mexico, USA. Appl Geochem 22(5):996–1016

    Article  Google Scholar 

  57. Wells A, Strazisar B, Diehl JR, Veloski G (2010) Atmospheric tracer monitoring and surface plume development at the ZERT pilot test in Bozeman, Montana, USA. Environ Earth Sci 60:299–305

    Article  Google Scholar 

  58. Zhang Y, Freifeld B, Finsterle S, Leahy M, Ennis-King J, Paterson L, Dance T (2011) Single-well experimental design for studying residual trapping of supercritical carbon dioxide. Int J Greenhouse Gas Control 5:88–98

    Article  Google Scholar 

  59. Semprini L, Hopkins OS, Tasker BR (2000) Laboratory, field and modeling studies of Radon - 222 as a natural tracer for monitoring NAPL contamination. Transp Porous Media 38:223–240 doi:10.1023/A:1006671519143

    Google Scholar 

Download references

Acknowledgments

This research has received funding from the European Community’s 7th Framework Programme through the MUSTANG (grant agreement no. 227286) and TRUST (grant agreement no. 309067) projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandru Bogdan Tatomir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tatomir, A.B., Jyoti, A., Sauter, M. (2016). Monitoring of CO2 Plume Migration in Deep Saline Formations with Kinetic Interface Sensitive Tracers (A Numerical Modelling Study for the Laboratory) . In: Vishal, V., Singh, T. (eds) Geologic Carbon Sequestration. Springer, Cham. https://doi.org/10.1007/978-3-319-27019-7_4

Download citation

Publish with us

Policies and ethics