Skip to main content

Security Assessment on Geological Storage of CO2: Application to Hontomin Site

  • Chapter
  • First Online:
Geologic Carbon Sequestration

Abstract

The safety and risk assessment of CO2 storage in geological formations requires a robust and iterative methodology based on an objective assessment, which shall provide an analysis and assessment of potential risks to health, safety and environment. The application of this methodology from the initial stages of the project will facilitate achieving its objectives. The results of the methodology should be twofold: the quality of the site from the point of view of the risks and the associated uncertainties. In the early stages of a project involving scarcely known natural systems, the methodology should take into account the unavoidable uncertainties in the available information and its impact on the risks, through a formalized quantification of those. In these phases the models used are mainly qualitative. As the project progresses and more information is available, the risk assessment methodology should allow gradual and continuous transition from qualitative data based models to quantitative ones.

Taking all these into account, in this work are presented the methodologies commonly used, based on those developed and fine-tuning for the past 20 or 30 years to the study of Deep Geological Repositories of high-level nuclear wastes, as well as the development carried out to estimate the risks of Hontomín Technological Development Plant, implemented under the formalism of Bayesian Networks (BNs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bachu S (2008) CO2 storage in geological media: role means, status and barriers to deployment. Prog Energy Combust Sci 34:254–273

    Article  Google Scholar 

  2. AIST Japan (2007) Building confidence in geological storage of carbon dioxide, s.l.: IEA Greenhouse Gas R&D Programme

    Google Scholar 

  3. European Communities (2011) Implementation of directive 2009/31/EC on the geological storage of carbon dioxide. Guidance document 1: CO2 storage life cycle risk management framework. ISBN-13978-92-79-19833-5. s.l.:s.n

    Google Scholar 

  4. Commission for the European Communities (2009) Directive of the European parliament and of the council on the geological storage of carbon dioxide and amending Council Directive 85/337/EEC, Directives 2000/60/EC, 2001/80/EC, 2004/35/EC, 2006/12/EC, 2008/1/EC and Regulation (EC) No 1013/2006. s.l.:s.n

    Google Scholar 

  5. van Egmond B (2006) Developing a method to screen and rank geological CO2 storage sites on the risk of leakage, s.l.: Copernicus Institute, Department of Science, Technology and Society. NWS-E-2006-108

    Google Scholar 

  6. Pérez M (1988) Razonamiento probabilístico y correlacional: influencia de teorías previas y de datos. s.l.:Tesis doctoral. Dpto. de Psicología Básica, Social y Metodología. Facultad de Psicología. Universidad Autónoma de Madrid

    Google Scholar 

  7. Slovic P, Fischhoff B (1977) On the psychology of experimental surprises. J Exp Psychol Hum Percept Perform 3(4):544–551

    Article  Google Scholar 

  8. Intergovernmental Panel on Climate Change (IPCC) (2005) IPCC special report on carbon dioxide capture and storage, s.l. Cambridge University Press, New York

    Google Scholar 

  9. IEA Greenhouse Gas R&D Programme (IEA GHG) (2009) A review of the international state of the art in risk assessment guidelines and proposed terminology for use in CO2 geological storage, Report Number: 2009/TR7, s.l.: IEA Environmental Projects Ltd. (IEA Greenhouse Gas R&D Programme)

    Google Scholar 

  10. Condor J, Unatrakarn D, Wilson M, Asghari K (2011) A comparative analysis of risk assessment methodologies for the geologic storage of carbon dioxide. Energy Procedia 4:4036–4043

    Article  Google Scholar 

  11. Wildenborg AFB et al (2005) Risk assessment methodology for CO2 storage: the scenario approach. In: Benson SM (ed) Carbon dioxide capture for storage in deep geologic formations. Elsevier, London, pp 1293–1316. ISBN 9780080445700

    Google Scholar 

  12. U.S. Environmental Protection Agency (2008) Vulnerability evaluation framework for geologic sequestration of carbon dioxide, s.l.: Technical Support Document EPA430-R-08-009

    Google Scholar 

  13. Oldenburg C (2008) Screening and ranking framework for geologic CO2 storage site selection on the basis of health, safety, and environmental risk. Environ Geol 54(8):1687–1694

    Article  Google Scholar 

  14. Walton F, Tait J, LeNeveu D, Sheppard M (2004) Geological storage of CO2: a statistical approach to assessing performance and risk. In: E.S.Rubin, D.W.Keith and C.F.Gilboy (Eds.) Proceedings of 7th international conference on Greenhouse gas control technologies, vol 1: peer-reviewed papers and plenary presentations. s.l.:IEA Greenhouse Gas Programme, Cheltenham, UK

    Google Scholar 

  15. Deel D et al (2007) Risk assessment and management for long-term storage of CO2 in geologic formations – United States Department of Energy R&D. Syst Cybern inform 5(1):79–84

    Google Scholar 

  16. Metcalfe R et al (2009) A unified approach to Performance Assessment (PA) of geological CO2 storage. Energy Procedia 1(1):2503–2510

    Article  Google Scholar 

  17. Hurtado A, Eguilior S, Recreo F (2014) Methodological development of a probabilistic model for CO2 geological storage safety assessment. Int J Energy Environ Eng 5:84

    Article  Google Scholar 

  18. Gerstenberger M, Christophersen A, Buxton R, Nicol A (2015) Bi-directional risk assessment in carbon capture and storage with Bayesian Networks. Int J Greenhouse Gas Control 35:150–159

    Article  Google Scholar 

  19. Rozell D, Reaven S (2012) Water pollution risk associated with natural gas extraction from the Marcellus Shale. Risk Anal 32(8):1382–1393

    Article  Google Scholar 

  20. Bouc O et al (2010) CO2 geological storage safety assessment: methodological development. In: 10th international probabilistic safety assessment & management conference, Seattle

    Google Scholar 

  21. SKI (1996) SKI Site-94: deep repository performance assessment project, s.l.: Swedish Nuclear Power Inspectorate, Stockholm, Sweden. SKI Report SKI 96:36

    Google Scholar 

  22. Stenhouse M (2001) Application of systems analysis to the long-term storage of CO2 in the Weyburn reservoir. Monitor Scientific Report MSCI-2025-1, Denver, Colorado, USA: Monitor Scientific LLC

    Google Scholar 

  23. Savage D, Maul R, Benbow S, Walke R (2004) A generic FEP database for the assessment of long-term performance and safety of the geological storage of CO2. QRS-1060A, s.l.: Quintessa

    Google Scholar 

  24. NEA/OECD (2000) Features, Events and Processes (FEPs) for geologic disposal of radioactive waste – an international database, NEA-OECD Report NEA 02549. Nuclear Energy Agency – Organization for Economic Cooperation and Development, Paris

    Google Scholar 

  25. Chadwick A et al (2007) Best practice for the storage of CO2 in saline aquifers – observations and guidelines from the SACS and CO2STORE projects. British Geological Survey, Nottingham

    Google Scholar 

  26. Oldenburg C (2005) Health, safety, and environmental screening and ranking framework for geologic CO2 storage site selection”. LBNL 58873, s.l.: s.n

    Google Scholar 

  27. del Olmo Zamora P et al (1979) Mapa y Memoria explicativa de la Hoja 109 (Villarcayo) del Mapa Geológico de España a escala 1:50.000 (Segunda serie), Primera edición, Madrid, Spain: IGME

    Google Scholar 

  28. Bouc O, Fabriol H (2007) Towards a methodology to define safety criteria for CO2 geological storage. Pittsburgh, Pennsylvania, sixth annual conference on carbon capture & sequestration

    Google Scholar 

  29. Bouc O et al (2009) Determining safety criteria for CO2 geological storage. Energy Procedia 1(1)

    Google Scholar 

  30. Stauffer P et al (2006) CO2-PENS: a CO2 sequestration system model supporting risk-based decisión. CMWR XVI, Copenhagen

    Google Scholar 

  31. Hurtado A et al (2010) Aplicación de una evaluación preliminar de la seguridad y de los riesgos HSE a las potenciales ubicaciones de una planta piloto de almacenamiento geológico de CO2. Fundacion CONAMA, Madrid

    Google Scholar 

  32. GoldSim Technology Group (2015) GoldSim: Monte Carlo Simulation Software. [Online] Available at: http://www.goldsim.com/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonsoles Eguilior .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hurtado, A., Eguilior, S., Recreo, F. (2016). Security Assessment on Geological Storage of CO2: Application to Hontomin Site. In: Vishal, V., Singh, T. (eds) Geologic Carbon Sequestration. Springer, Cham. https://doi.org/10.1007/978-3-319-27019-7_15

Download citation

Publish with us

Policies and ethics