Skip to main content

Carbon Capture, Transport and Geologic Storage: A Brief Introduction

  • Chapter
  • First Online:
Geologic Carbon Sequestration

Abstract

Carbon capture and storage can simply be defined as capturing of waste CO2 from industrial sources at various stages (ex. pre-, post- combustion etc.), transporting it to a storage site (through pipelines etc.) and then depositing it underground so that the CO2 will not re-enter the atmosphere for a geologically significant long time. Because of the low prices of fossil fuels and lesser statutory restrictions in developing countries (which are primarily dependent on this form of energy), aided by slow development and high cost of alternative energy projects, the CO2 emission into the atmosphere has been ever increasing. The long lasting effects of such high levels of CO2 in atmosphere can portray an image of an impending catastrophe but a better approach would be to avoid those and look into the solutions to minimize the CO2 levels in atmosphere. This introductory chapter offers an insight into the technologies and the techniques that have been developed for carbon capture followed by transporting methods (and their problems) and ends with discussing the various storage technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Energy Agency Key world energy Statistics (2009) http://www.iea.org/textbase/nppdf/free/2009/key_stats_2009.pdf. Accessed Feb 2015

  2. International Energy Agency World Energy Outlook (2007) https://www.iea.org/publications/freepublications/publication/weo-2007 full.html. Accessed Feb 2015

  3. Mongia N, Bhatia R, Sathaye J, Mongia P (1991) Cost of reducing CO 2 emissions from India: imperatives for international transfer of resources and technologies. Energy Policy 19(10):978–986

    Article  Google Scholar 

  4. Morthorst PE, Grohnheit PE (1992) UNEP greenhouse gas abatement costing studies. Risoe National Lab., Roskilde (Denmark). Systems Analysis

    Google Scholar 

  5. Vishal V, Ranjith PG, Singh TN (2013) CO2 permeability of Indian bituminous coals: implications for carbon sequestration. Int J Coal Geol 105:36–47

    Article  Google Scholar 

  6. Herzog H, Golomb D (2004) Carbon capture and storage from fossil fuel use. Encycl Energy 1:1–11

    Google Scholar 

  7. Sathaye J, Norgaard R, Makundi W (1993) A conceptual framework for the evaluation of cost-effectiveness of projects to reduce ghg emissions and sequester carbon. LBL-33859, Lawrence Berkeley Laboratory, Berkeley, CA, USA

    Google Scholar 

  8. White CM, Strazisar BR, Granite EJ, Hoffman JS, Pennline HW (2003) Separation and capture of CO2 from large stationary sources and sequestration in geological formations—coalbeds and deep saline aquifers. J Air Waste Manag Assoc 53(6):645–715

    Article  Google Scholar 

  9. Olajire AA (2010) CO 2 capture and separation technologies for end-of-pipe applications–a review. Energy 35(6):2610–2628

    Article  Google Scholar 

  10. Stewart C, Hessami MA (2005) A study of methods of carbon dioxide capture and sequestration––the sustainability of a photosynthetic bioreactor approach. Energy Convers Manag 46(3):403–420

    Article  Google Scholar 

  11. Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE, Wright I (2008) Progress in carbon dioxide separation and capture: a review. J Environ Sci 20(1):14–27

    Article  Google Scholar 

  12. Katzer J, Ansolabehere S, Beer J, Deutch J, Ellerman AD, Friedmann SJ, Steinfeld E (2007) The future of coal: options for a carbon-constrained world. Massachusetts Institute of Technology, MA, USA

    Google Scholar 

  13. Forbes SM, Verma P, Curry TE, Friedmann SJ, Wade SM (2008) Guidelines for carbon dioxide capture, transport and storage. World Resources Institute, Washington, DC, USA

    Google Scholar 

  14. Haszeldine RS (2009) Carbon capture and storage: how green can black be? Science 325(5948):1647–1652

    Article  Google Scholar 

  15. Gibbins J, Chalmers H (2008) Carbon capture and storage. Energy Policy 36(12):4317–4322

    Article  Google Scholar 

  16. Rochon E, Kuper J, Bjureby E, Johnston P, Oakleym R, Santillo D, Goerne GV (2008) False hope: why carbon capture and storage won’t save the climate. Greenpeace International, Amsterdam, Netherlands.

    Google Scholar 

  17. Richter HJ, Knoche KF (1983) Reversibility of combustion processes. In: Gaggioli RA (ed) Efficiency and costing, second law analysis of process, ACS Symposium Series 235. American Chemical Society, Washington, DC, pp 71–85

    Google Scholar 

  18. Bao L, Trachtenberg MC (2005) Modeling CO2-facilitated transport across a diethanolamine liquid membrane. Chem Eng Sci 60(24):6868–6875

    Article  Google Scholar 

  19. Lyngfelt A (2004) A new combustion technology. Greenhouse Gas Issues 73:2–3

    Google Scholar 

  20. Vishal V, Ranjith PG, Pradhan SP, Singh TN (2013) Permeability of sub-critical carbon dioxide in naturally fractured Indian bituminous coal at a range of down-hole stress conditions. Eng Geol 167:148–156

    Article  Google Scholar 

  21. Lyngfelt A (2007) Chemical looping combustion of solid fuels. Greenhouse Gas Issues 87:9

    Google Scholar 

  22. Shackley S, Verma P (2008) Tackling CO2 reduction in India through use of CO2 capture and storage (CCS): prospects and challenges. Energy Policy 36(9):3554–3561

    Article  Google Scholar 

  23. Vishal V, Singh L, Pradhan SP, Singh TN, Ranjith PG (2013) Numerical modeling of Gondwana coal seams in India as coalbed methane reservoirs substituted for carbon dioxide sequestration. Energy 49:384–394

    Article  Google Scholar 

  24. Vishal V, Ranjith PG, Singh TN (2015) An experimental investigation on behaviour of coal under fluid saturation, using acoustic emission. J Nat Gas Sci Eng 22:428–436

    Article  Google Scholar 

  25. Vishal V, Singh TN, Ranjith PG (2015) Influence of sorption time in CO2-ECBM process in Indian coals using coupled numerical simulation. Fuel 139:51–58

    Article  Google Scholar 

  26. Vishal V, Singh TN (2015) A laboratory investigation of permeability of coal to supercritical CO2. Geotech Geol Eng 33:1009–1016

    Article  Google Scholar 

  27. Lal R (2008) Soil carbon stocks under present and future climate with specific reference to European ecoregions. Nutr Cycl Agroecosyst 81(2):113–127

    Article  Google Scholar 

  28. Lal R, Follett RF, Kimble JM (2003) Achieving soil carbon sequestration in the United States: a challenge to the policy makers. Soil Sci 168(12):827–845

    Article  Google Scholar 

  29. Seifritz W (1990) CO2 disposal by means of silicates. Nature 345:486

    Article  Google Scholar 

  30. Lackner KS, Wendt CH, Butt DP, Joyce EL, Sharp DH (1995) Carbon dioxide disposal in carbonate minerals. Energy 20(11):1153–1170

    Article  Google Scholar 

  31. GHG I (2000) CO2 storage as carbonate minerals. CSMA Consultants Ltd, Cheltenham. PH3/17

    Google Scholar 

  32. Oelkers EH, Gislason SR, Matter J (2008) Mineral carbonation of CO2. Elements 4(5):333–337

    Article  Google Scholar 

  33. Gislason SR, Wolff-Boenisch D, Stefansson A, Oelkers EH, Gunnlaugsson E, Sigurdardottir H, Fridriksson T (2010) Mineral sequestration of carbon dioxide in basalt: a pre-injection overview of the CarbFix project. Int J Greenhouse Gas Control 4(3):537–545

    Article  Google Scholar 

  34. Sanna A, Uibu M, Caramanna G, Kuusik R, Maroto-Valer MM (2014) A review of mineral carbonation technologies to sequester CO2. Chem Soc Rev 43(23):8049–8080

    Article  Google Scholar 

  35. Bachu S (2003) Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change. Environ Geol 44(3):277–289

    Article  Google Scholar 

  36. Pruess K (2003) Numerical simulation of leakage from a geologic disposal reservoir for CO2, with transitions between super-and sub-critical conditions. Lawrence Berkeley National Laboratory, Berkeley, CA, United States.

    Book  Google Scholar 

  37. Bandilla KW, Celia MA, Birkholzer JT, Cihan A, Leister EC (2015) Multiphase modeling of geologic carbon sequestration in saline aquifers. Groundwater 53(3):362–377

    Article  Google Scholar 

  38. Bachu S, Gunter WD (2004) Overview of acid-gas injection operations in western Canada. In: Proceedings of the 7th international conference on greenhouse gas control technologies, Edmonton, AB, Canada,Vol 1, p 5–9

    Google Scholar 

  39. Michael K, Golab A, Shulakova V, Ennis-King J, Allinson G, Sharma S, Aiken T (2010) Geological storage of CO2 in saline aquifers—a review of the experience from existing storage operations. Int J Greenhouse Gas Control 4(4):659–667

    Article  Google Scholar 

  40. Herzog H, Drake E, Tester J, Rosenthal R (1993) A research needs assessment for the capture, utilization, and disposal of carbon dioxide from fossil fuel-fired power plants. Report to the US Department of Energy, Grant No. DEFG02-92ER30194. AOOO, from MIT Energy Laboratory, MA, USA

    Google Scholar 

  41. Herzog H, Drake E, Adams E (1997) CO2 capture, reuse, and storage technologies for mitigating global climate change: a white paper. MIT Energy Laboratory, MA, USA

    Google Scholar 

  42. Reichle D, Houghton J, Kane B, Ekmann J (1999) Carbon sequestration research and development (No. DOE/SC/FE-1). National Lab/National Energy Technology Lab/National Energy Technology Lab, Oak Ridge/Pittsburgh/Morgantown, USA

    Book  Google Scholar 

  43. Herzog HJ (2001) Peer reviewed: what future for carbon capture and sequestration? Environ Sci Technol 35(7):148A–153A

    Article  Google Scholar 

  44. Williams D, Durie B, McMullan P, Paulson C, Smith A (2001) Greenhouse gas control technologies. In: Proceedings from the fifth international conference (GHGT-5). CSIRO Publishing, Clayton, Victoria, Australia

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Jain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jain, N., Srivastava, A., Singh, T.N. (2016). Carbon Capture, Transport and Geologic Storage: A Brief Introduction. In: Vishal, V., Singh, T. (eds) Geologic Carbon Sequestration. Springer, Cham. https://doi.org/10.1007/978-3-319-27019-7_1

Download citation

Publish with us

Policies and ethics