Skip to main content

The Physics of Brachytherapy

  • Chapter
  • First Online:

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

Just as the right arm of the radiation oncologist is the medical physicist, so the heart of brachytherapy is the science of physics. In this chapter we introduce the basics of brachytherapy physics beginning with the core of the science and culminating with a comprehensive presentation of the known science to date.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  1. Units, I.C.o.R (1991) Measurements: dose and volume specification for reporting intracavitary therapy in gynecology; Repr, vol 38. International commission on radiation units and measurements

    Google Scholar 

  2. Halperin EC, Brady LW, Wazer DE et al (2013) Perez & Brady’s principles and practice of radiation oncology. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  3. NCRP (1985) A handbook of radioactivity measurements procedures. NCRP report 58

    Google Scholar 

  4. Nath R, Anderson LL, Meli JA et al (1997) Code of practice for brachytherapy physics: report of the AAPM Radiation Therapy Committee Task Group No. 56. Med Phys 24(10):1557–1598

    Article  CAS  PubMed  Google Scholar 

  5. Units, I.C.o.R (1998) Fundamental quantities and units for ionizing radiation, vol 58. International commission on radiation

    Google Scholar 

  6. Nath R (1987) Specification of Brachytherapy Source Strength: Report of AAPM Task Group 32

    Google Scholar 

  7. Rivard MJ, Coursey BM, DeWerd LA et al (2004) Update of AAPM Task Group No. 43 Report: A revised AAPM protocol for brachytherapy dose calculations. Med Phys 31(3):633–674

    Article  PubMed  Google Scholar 

  8. Thomadsen B, Rivard MJ, Butler WM, Medicine, A.A.o.P.i (2005) Brachytherapy physics. American association of physicists in medicine

    Google Scholar 

  9. Richardson S (2012) A 2-year review of recent Nuclear Regulatory Commission events: what errors occur in the modern brachytherapy era? Pract Radiat Oncol 2(3):157–163

    Article  PubMed  Google Scholar 

  10. Krishnaswamy V (1972) Dose distributions about 137Cs sources in tissue 1. Radiology 105(1):181–184

    Article  CAS  PubMed  Google Scholar 

  11. Paterson JRK, Meredith WJ (1967) Radium dosage: the Manchester system. E. & S. Livingstone, Edinburgh

    Google Scholar 

  12. Glasser O, Quimby H, Taylor LS et al (1961) Physical foundations of radiology. Hoeber, New York, p 581

    Google Scholar 

  13. Rivard MJ, Butler WM, DeWerd LA et al (2007) Supplement to the 2004 update of the AAPM Task Group No. 43 Report. Med Phys 34(6):2187–2205

    Article  PubMed  Google Scholar 

  14. Fellner C, Pötter R, Knocke TH et al (2001) Comparison of radiography-and computed tomography-based treatment planning in cervix cancer in brachytherapy with specific attention to some quality assurance aspects. Radiother Oncol 58(1):53–62

    Article  CAS  PubMed  Google Scholar 

  15. Gebara WJ, Weeks KJ, Hahn CA et al (1998) Computed axial tomography tandem and ovoids (CATTO) dosimetry: three‐dimensional assessment of bladder and rectal doses. Radiat Oncol Investig 6(6):268–275

    Article  CAS  PubMed  Google Scholar 

  16. Mizoe J (1990) Analysis of the dose-volume histogram in uterine cervical cancer by diagnostic CT. Strahlentherapie und Onkologie: Organ der Deutschen Rontgengesellschaft[et al] 166(4):279–284

    CAS  Google Scholar 

  17. Schoeppel SL, Lavigne ML, Martel MK et al (1994) Three-dimensional treatment planning of intracavitary gynecologic implants: analysis of ten cases and implications for dose specification. Int J Radiat Oncol Biol Phys 28(1):277–283

    Article  CAS  PubMed  Google Scholar 

  18. Haie-Meder C, Pötter R, Van Limbergen E et al (2005) Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group☆(I): concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV. Radiother Oncol 74(3):235–245

    Article  PubMed  Google Scholar 

  19. Viswanathan AN, Erickson BA (2010) Three-dimensional imaging in gynecologic brachytherapy: a survey of the American Brachytherapy Society. Int J Radiat Oncol Biol Phys 76(1):104–109

    Article  PubMed  Google Scholar 

  20. Willins J, Wallner K (1997) CT-based dosimetry for transperineal I-125 prostate brachytherapy. Int J Radiat Oncol Biol Phys 39(2):347–353

    Article  CAS  PubMed  Google Scholar 

  21. Pötter R, Haie-Meder C, Van Limbergen E et al (2006) Recommendations from gynaecological (GYN) GEC ESTRO working group (II): concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy—3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology. Radiother Oncol 78(1):67–77

    Article  PubMed  Google Scholar 

  22. Blasko J, Ragde H, Schumacher D (1987) Transperineal percutaneous iodine-125 implantation for prostatic carcinoma using transrectal ultrasound and template guidance. Endocuriether Hypertherm Oncol 3:131–139

    Google Scholar 

  23. Edmundson GK, Yan D, Martinez AA (1995) Intraoperative optimization of needle placement and dwell times for conformal prostate brachytherapy. Int J Radiat Oncol Biol Phys 33(5):1257–1263

    Article  CAS  PubMed  Google Scholar 

  24. Holm H, Juul N, Pedersen J et al (2002) Transperineal 125 iodine seed implantation in prostatic cancer guided by transrectal ultrasonography. J Urol 167(2):985–988

    Article  CAS  PubMed  Google Scholar 

  25. Vicini FA, Jaffray DA, Horwitz EM et al (1998) Implementation of 3D-virtual brachytherapy in the management of breast cancer: a description of a new method of interstitial brachytherapy. Int J Radiat Oncol Biol Phys 40(3):629–635

    Article  CAS  PubMed  Google Scholar 

  26. Nag S, Cardenes H, Chang S et al (2004) Proposed guidelines for image-based intracavitary brachytherapy for cervical carcinoma: report from Image-Guided Brachytherapy Working Group. Int J Radiat Oncol Biol Phys 60(4):1160–1172

    Article  PubMed  Google Scholar 

  27. Ménard C, Susil RC, Choyke P et al (2004) MRI-guided HDR prostate brachytherapy in standard 1.5 T scanner. Int J Radiat Oncol Biol Phys 59(5):1414–1423

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pouliot J, Kim Y, Lessard E et al (2004) Inverse planning for HDR prostate brachytherapy used to boost dominant intraprostatic lesions defined by magnetic resonance spectroscopy imaging. Int J Radiat Oncol Biol Phys 59(4):1196–1207

    Article  PubMed  Google Scholar 

  29. Viswanathan AN, Dimopoulos J, Kirisits C et al (2007) Computed tomography versus magnetic resonance imaging-based contouring in cervical cancer brachytherapy: results of a prospective trial and preliminary guidelines for standardized contours. Int J Radiat Oncol Biol Phys 68(2):491–498

    Article  PubMed  Google Scholar 

  30. Malyapa RS, Mutic S, Low DA et al (2002) Physiologic FDG-PET three-dimensional brachytherapy treatment planning for cervical cancer. Int J Radiat Oncol Biol Phys 54(4):1140–1146

    Article  PubMed  Google Scholar 

  31. Lin LL, Mutic S, Low DA et al (2007) Adaptive brachytherapy treatment planning for cervical cancer using FDG-PET. Int J Radiat Oncol Biol Phys 67(1):91–96

    Article  PubMed  Google Scholar 

  32. Mutic S, Grigsby PW, Low DA et al (2002) PET-guided three-dimensional treatment planning of intracavitary gynecologic implants. Int J Radiat Oncol Biol Phys 52(4):1104–1110

    Article  PubMed  Google Scholar 

  33. Lessard E, Pouliot J (2001) Inverse planning anatomy-based dose optimization for HDR-brachytherapy of the prostate using fast simulated annealing algorithm and dedicated objective function. Med Phys 28(5):773–779

    Article  CAS  PubMed  Google Scholar 

  34. Lee EK, Gallagher RJ, Silvern D et al (1999) Treatment planning for brachytherapy: an integer programming model, two computational approaches and experiments with permanent prostate implant planning. Phys Med Biol 44(1):145

    Article  CAS  PubMed  Google Scholar 

  35. Lachance B, Béliveau-Nadeau D, Lessard É et al (2002) Early clinical experience with anatomy-based inverse planning dose optimization for high-dose-rate boost of the prostate. Int J Radiat Oncol Biol Phys 54(1):86–100

    Article  PubMed  Google Scholar 

  36. Lahanas M, Baltas D, Giannouli S (2003) Global convergence analysis of fast multiobjective gradient-based dose optimization algorithms for high-dose-rate brachytherapy. Phys Med Biol 48(5):599

    Article  CAS  PubMed  Google Scholar 

  37. Milickovic N, Lahanas M, Papagiannopoulou M et al (2002) Multiobjective anatomy-based dose optimization for HDR-brachytherapy with constraint free deterministic algorithms. Phys Med Biol 47(13):2263

    Article  CAS  PubMed  Google Scholar 

  38. Pouliot J, Tremblay D, Roy J et al (1996) Optimization of permanent 125 I prostate implants using fast simulated annealing. Int J Radiat Oncol Biol Phys 36(3):711–720

    Article  CAS  PubMed  Google Scholar 

  39. Tedgren ÅC, Ahnesjö A (2008) Optimization of the computational efficiency of a 3D, collapsed cone dose calculation algorithm for brachytherapy. Med Phys 35(4):1611–1618

    Article  Google Scholar 

  40. Zourari K, Pantelis E, Moutsatsos A et al (2010) Dosimetric accuracy of a deterministic radiation transport based I192r brachytherapy treatment planning system. Part I: single sources and bounded homogeneous geometries. Med Phys 37(2):649–661

    Article  CAS  PubMed  Google Scholar 

  41. Petrokokkinos L, Zourari K, Pantelis E et al (2011) Dosimetric accuracy of a deterministic radiation transport based I192r brachytherapy treatment planning system. Part II: Monte Carlo and experimental verification of a multiple source dwell position plan employing a shielded applicator. Med Phys 38(4):1981–1992

    Article  CAS  PubMed  Google Scholar 

  42. Zourari K, Pantelis E, Moutsatsos A et al (2013) Dosimetric accuracy of a deterministic radiation transport based 192Ir brachytherapy treatment planning system. Part III. Comparison to Monte Carlo simulation in voxelized anatomical computational models. Med Phys 40(1):011712

    Article  CAS  PubMed  Google Scholar 

  43. Mikell JK, Klopp AH, Price M et al (2013) Commissioning of a grid-based Boltzmann solver for cervical cancer brachytherapy treatment planning with shielded colpostats. Brachytherapy 12(6):645–653

    Article  PubMed  Google Scholar 

  44. Thomson R, Taylor T, Rogers D (2008) Monte Carlo dosimetry for I125 and Pd103 eye plaque brachytherapy. Med Phys 35(12):5530–5543

    Article  CAS  PubMed  Google Scholar 

  45. Carrier JF, D’Amours M, Verhaegen F et al (2007) Postimplant dosimetry using a Monte Carlo dose calculation engine: a new clinical standard. Int J Radiat Oncol Biol Phys 68(4):1190–1198

    Article  PubMed  Google Scholar 

  46. Poon E, Williamson JF, Vuong T et al (2008) Patient-specific Monte Carlo dose calculations for high-dose-rate endorectal brachytherapy with shielded intracavitary applicator. Int J Radiat Oncol Biol Phys 72(4):1259–1266

    Article  PubMed  Google Scholar 

  47. Poon E, Le Y, Williamson JF et al (2008) BrachyGUI: an adjunct to an accelerated Monte Carlo photon transport code for patient-specific brachytherapy dose calculations and analysis. J Phys Conference Series 102:012018, IOP Publishing

    Google Scholar 

  48. Papagiannis P, Pantelis E, Karaiskos P (2014) Current state of the art brachytherapy treatment planning dosimetry algorithms. Br J Radiol 87(1041):20140163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rivard MJ, Venselaar JL, Beaulieu L (2009) The evolution of brachytherapy treatment planning. Med Phys 36(6):2136–2153

    Article  PubMed  Google Scholar 

  50. Beaulieu L, Tedgren ÅC, Carrier JF et al (2012) Report of the Task Group 186 on model-based dose calculation methods in brachytherapy beyond the TG-43 formalism: current status and recommendations for clinical implementation. Med Phys 39(10):6208–6236

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leah K. Schubert PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schubert, L.K., Miften, M. (2016). The Physics of Brachytherapy. In: Montemaggi, P., Trombetta, M., Brady, L. (eds) Brachytherapy. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/978-3-319-26791-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26791-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26789-0

  • Online ISBN: 978-3-319-26791-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics