Chapter 11
Interpolation of Morrey Spaces

11.1 Stampacchia-Peetre interpolation; Interpolation
via the new duality

Now we turn our attention to interpolation of linear operators on Morrey spaces, say
T:00" — L7

for various p, g, A,and u; 1 <p,g<oo, 0 <A, u<n.

First, with regard to the history of such attempts. It must surely start with
Stampacchia [S] in 1965 when he showed that interpolation works quite easily when
the Morrey Spaces lie only in the range of the operator. In fact, if

T:L% — [Ph, i=0,1

then
T:L% —s [P0
where
1 1-6 0 1 1-6 6
— = + -, — = + — (11.1)
q6 q0 q1 Do Po P1
and
A A A
20— -2 y ot (11.2)
Po Po p1
and0 < 6 < 1.
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Proof. The hypotheses imply

1/pi 1/qi
sup (* [ sy dy) <A ( [ e dy) ,
x,r>0 B(x,r)

for i = 0, 1. Hence for any fixed ball B(x, r),
[ vy < A g
B(x,r)

So now by standard interpolation between Lebesgue spaces, one has

1/pe
( [ s dy) < My [l
B(x,r)

with M; = A; l’(”_l")/‘”", i=0,1.
Hence My = M}™'M? = AL~0Arn=2o)/ps,
Which gives
NT fllpore < Mo ||f]lLee.

But this argument does not work for
T:1P — L9, i=0,1.
So we will concentrate on this case now. And, of course, to prove this, it is now
natural to use the duality that we have established in Chapter 5. Thus let 7* =
adjoint of T and suppose that

T* : L4 —s HPiN | j=0,1.

The hypothesis implies that there are w; € A; such that

/ w; AN < 1

and

Sy 1/p} , 1/q;
( [t ’dy) SAi( [ dy) .

w7 = (] Py, (11.3)

l

We now write
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This then allows us to apply “Stein’s Interpolation with change of measure” (see
[BS]) to get
ey 1/py’ , 1/45
([t o™ a) ™ < af [ o)

re re
2(1—g) g
wy = )’ OHA (11.4)

where

To make our conclusion and then by duality our interpolation result, we must now
show that

wy € Ay and /a)g dA"™% < constant.

We first note that this is now very easy in the case where 1o = A; = A, i.e., in
the known case in the literature [Y2, Y?Z], because (11.4) implies that wy € A; and

L=ty Lp
/ wg dN"™ < ¢ ( / wo dA"—*) ( / wldA"—*)

by the quasi Holder (via A”~%),i.e., 22(1—0) + 220 = 1.
P1

Po
Thus we get

1Tl e < Ao 1AL,

and then for our result
T — L%

for the case Ag = A1 = A.
However, we are trying for more. And to do this we now invoke the atomic
decompositions of [AX2], we have

Lemma 11.1. € L'(AY) iff o = Y, cx a, where {c;} € [' and the q; are
(00, d)- atoms, i.e.

(i) supp ax C cube Oy

and

(i) llallooo < 1Qkl™".
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And the norm of L'(A?) (actually a quasi-norm for we must go through 1~\g - see
Chapter 3), is equivalent to

infz ek
k

with the infimum over all such representations.

With this lemma, we argue as follows: write

w; = Z C,((i) a,(f), i=0,1, with

k
> ~ f w; dN"H.
k

Then set
C, = |C/(<O)|1_® |C/£1)|®’
with
=% and 1—0=1-2o=P_0).
P1 P1 Po
Then

®

ILE (;wﬁ"ﬂ)l_@(;wﬁ)

1—0 ®
EA(/wo dAHO) (/w1 dA"—*l)

< A = absolute constant.

Thus settinga,(f)) = |a/(<0)|1_®'|a,({1)|®

This then is our argument for the

, we see that it is indeed an (oo, n — Ag) atom.

Theorem 11.2. If the linear operator T satisfies
T:[M4 — L9, i=0,1
with 1 < p; < oo and 0 < A; < n, then there is a constant such that
TP — [0

with pg, g9, Ag given by (11.1) and (11.2).
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Proof. Proof of Lemma 11.1
On one hand, if f = )", ¢k a, then by the quasi-sublinearity

1l a < / > [kl o dA?
k

e Ylal [ lal dr’
k
< ¢ lleddlln-

Conversely, suppose ||f||1(a¢) < 00, then using the construction given in [AX2],
we can write

f= Z Cjkdjk
Jik
where
¢k = 1(Qp)! - 24!
a4k (x) = f(X) - X0 - Z(Qj,k)_d . p—(+1)

I(Q) = edge length of the cube Q. Then |f(x)| < 2**! forx € A and {c;} € I'

since

IHejudlln <A 1@ 2T < AJ[f|[pipa-

The Q) and A; are selectively chosen dyadic cubes; see[AX2]. ]

Finally one can argue for
T:[PA 5 [

by putting together our argument with that of Stampacchia.

11.2 Counterexamples to interpolation with Morrey Spaces
in the domain of the operator

But one should note that there are some counterexamples. A close examination
of these examples shows in fact that the Campanato spaces are not stable under
interpolation. In [BRV], the authors give an example (in one dimension) where
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0 < Ap < A1 = 1 = n, and then show that interpolation does not achieve a Morrey
Space estimate for the intermediate case of A9 : 0 < A < A9 < A; = 1. Also, from
[SZ] one gets

T:C*—C*
T:0*—1?
but T(f) ¢ L7 for any g > 2. One would hope for some Morrey cases as intermediate

situations. Also, we note from the proof given for Theorem 11.2, that it is really
necessary to have A € (0,n) for [ dA"* doesn’t make sense when A = n.

11.3 Integrability of Morrey Potentials

As an application of Theorem 11.2, we get the following integrability result for
Morrey potentials: If, f € [’*,ap < A < n. Indeed, Lemma 9.1 yields
I : ’* — BMO C L

loc

for any gy < co when Ay = ap < n, p > 1. And Theorem 7.1(i)

. TPl q1
I M — L

for g = Aip/(A1 —ap), ap < Ay < n, p > 1. Hence by interpolation

I : P — LY,
forany g < np/(A —ap), ap = Ay < A < A <n.

And notice, Ify € L} _for fo(y) = |y|™*/7, y € R™.

This all seems to work out here since Ao and A; both less that n= dimension of
the underlying space, hence no L” spaces are included in the class of functions being
interpolated (see [BRV] and [LR]).
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