Skip to main content

Variance Contracts: Fixed Income Security Design

  • Chapter
  • First Online:
Book cover The Price of Fixed Income Market Volatility

Part of the book series: Springer Finance ((FINANCE))

  • 1331 Accesses

Abstract

This chapter provides a general framework for designing and pricing variance swaps referencing fixed income securities. In a variance swap contract, the seller pays the amount by which the realized variance of some market variable of interest over a fixed time horizon exceeds a threshold—the variance swap rate—agreed upon at the trade’s inception. As such, the variance swap rate represents the market’s expectation of future variance, and in turn serves as the basis of a volatility gauge. Certain conditions are required of the contract design in order for the variance swap rate to be priced with as few modeling assumptions as possible, and ideally lead to a model-independent volatility gauge. Some theoretical and empirical properties of these volatility gauges are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 39.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Proposition 2.2 also covers the standard equity case with constant interest rates. In this case, \(N_{t}\) is the price of a zero-coupon bond expiring at \(T\), i.e. \(e^{-\bar{r} ( T-t ) }\), where \(\bar {r}\) denotes the constant interest rate.

  2. 2.

    The assumption in Eq. (2.8) that basis point volatility is constant is quite stylized, and is only made for the purpose of neatly illustrating the differences between basis point and percentage volatility. In general, the variance of forward risks in fixed income markets is time-varying. For example, Vasicek (1977) predicts that the basis point volatility of government bond forward prices is time-varying, albeit deterministically (see Chap. 4), \(\sigma_{v,\mathrm{n}}^{2} ( \tau ) \) say, so that Eq. (2.9) would read, \(K_{Y}=\int _{t}^{T}\sigma_{v,\mathrm{n}}^{2} ( \tau )d\tau\).

  3. 3.

    Note, however, that for the percentage variance contract, we have, \(\mathbb {E}_{t}^{Q^{N}} ( V ( t,T ) ) =-2\mathbb {E}_{t}^{Q^{N}} ( \ln\frac{X_{T}}{X_{t}} ) \), so that the option positions have the same sign both when it comes to hedge the basis point and the percentage realized variance, as further clarified in the next chapters. Still, the forward positions have opposite signs as Eq. (2.14) and Eq. (2.15) reveal.

  4. 4.

    Martin (2013) has also recently considered the same setup in Carr and Corso (2001) assuming constant interest rates.

  5. 5.

    Note that this replication argument hinges upon the forward starting agreement in Eq. (2.1), not the underlying risk \(X_{t}\), as the latter is not necessarily traded.

  6. 6.

    The forward swap rate is a martingale under the swap market probability but is not necessarily Gaussian. Therefore, the bands in Fig. 2.3 are approximate.

  7. 7.

    The expression in Eq. (2.31) was first derived by Bakshi et al. (2003) in the equity case and constant interest rate \(\bar{r}\) (i.e. for \(N_{\tau}=e^{-\bar{r}(T-\tau)}\)), in their attempt to determine model-free measures of skewness.

  8. 8.

    In the equity literature, one usually defines a variance risk premium as the difference between the expectation of future realized variance under the risk-neutral and the physical probabilities (see, e.g., Bollerslev et al. 2009). Our notion of variance risk premium is consistent with the purpose of defining payoffs that have zero value under the market probability, as is the case with \(\pi_{t+S}^{\mathrm{incr}}\). The expectation of \(\pi_{t+S}^{\mathrm{incr}}\) under the physical probability is the variance risk premium as usually defined in the literature, although we shall keep on referring to \(\pi_{t+S}^{\mathrm{incr}}\) as variance risk premium.

  9. 9.

    Fornari (2010) documents early estimates of volatility risk premiums in the interest rate swap space. His estimates regard percentage volatility, not basis point as in this section, and rely on proxies for model-free implied volatility based on the standard equity methodology instead of the interest rate methodology, which was subsequent to his work.

  10. 10.

    See, e.g., Jacod and Shiryaev (1987, pp. 142–146), for a succinct discussion of jump-diffusion processes.

References

  • Aït-Sahalia, Y., & Jacod, J. (2014). High frequency financial econometrics. Princeton: Princeton University Press.

    Book  MATH  Google Scholar 

  • Andersen, T., Bollerslev, T., & Diebold, F. (2010). Parametric and nonparametric measurements of volatility. In Y. Aït-Sahalia & L. P. Hansen (Eds.), Tools and techniques: Vol. 1. Handbook of financial econometrics (pp. 67–137). Amsterdam: North-Holland.

    Chapter  Google Scholar 

  • Bakshi, G., & Madan, D. (2000). Spanning and derivative security evaluation. Journal of Financial Economics, 55, 205–238.

    Article  Google Scholar 

  • Bakshi, G., Kapadia, N., & Madan, D. (2003). Stock return characteristics, skew laws, and differential pricing of individual equity options. The Review of Financial Studies, 16, 101–143.

    Article  Google Scholar 

  • Bibkov, R., & Misra, P. (2012). SRVX volatility index. Bank of America Merrill Lynch US Rates Weekly, 15.

    Google Scholar 

  • Black, F. (1976). The pricing of commodity contracts. Journal of Financial Economics, 3, 167–179.

    Article  Google Scholar 

  • Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81, 637–659.

    Article  MATH  Google Scholar 

  • Bollerslev, T., Tauchen, G., & Zhou, H. (2009). Expected stock returns and variance risk premia. The Review of Financial Studies, 22, 4463–4492.

    Article  Google Scholar 

  • Brenner, M., & Subrahmanyam, M. G. (1988). A simple formula to compute implied standard deviation. Financial Analysts Journal, 5, 80–83.

    Article  Google Scholar 

  • Britten-Jones, M., & Neuberger, A. (2000). Option prices, implied price processes and stochastic volatility. The Journal of Finance, 55, 839–866.

    Article  Google Scholar 

  • Carr, P., & Corso, A. (2001). Commodity covariance contracting. Energy and Power Risk Management, 4, 42–45.

    Google Scholar 

  • Carr, P., & Madan, D. (2001). Optimal positioning in derivative securities. Quantitative Finance, 1, 19–37.

    Article  MathSciNet  Google Scholar 

  • Carr, P., & Wu, L. (2006). A tale of two indices. The Journal of Derivatives, 13, 13–29.

    Article  Google Scholar 

  • Carr, P., & Wu, L. (2008). Variance risk premiums. The Review of Financial Studies, 22, 1311–1341.

    Article  Google Scholar 

  • Carr, P., & Lee, R. (2009). Volatility derivatives. Annual Review of Financial Economics, 1, 1–21.

    Article  Google Scholar 

  • Corradi, V., Distaso, W., & Mele, A. (2013). Macroeconomic determinants of stock volatility and volatility premiums. Journal of Monetary Economics, 60, 203–220.

    Article  Google Scholar 

  • Demeterfi, K., Derman, E., Kamal, M., & Zou, J. (1999a). A guide to variance swaps. Risk, 12(6), 54–59.

    Google Scholar 

  • Demeterfi, K., Derman, E., Kamal, M., & Zou, J. (1999b). A guide to volatility and variance swaps. The Journal of Derivatives, 6(4), 9–32.

    Article  Google Scholar 

  • Dumas, B. (1995). The meaning of the implicit volatility function in case of stochastic volatility. Unpublished appendix of: Dumas, B., Fleming, J., & Whaley, R. E. (1998). Implied Volatility Functions: Empirical Tests. The Journal of Finance, 53, 2059–2106.

    Google Scholar 

  • Engle, R. F. (2004). Nobel lecture: risk and volatility: econometric models and financial practice. The American Economic Review, 94, 405–420.

    Article  Google Scholar 

  • Geman, H. (1989). The importance of the forward neutral probability in a stochastic approach to interest rates. Unpublished working paper, ESSEC.

    Google Scholar 

  • Geman, H., El Karoui, N., & Rochet, J.-C. (1995). Changes of numéraire, changes of probability measures and pricing of options. Journal of Applied Probability, 32, 443–458.

    Article  MathSciNet  MATH  Google Scholar 

  • Fornari, F. (2010). Assessing the compensation for volatility risk implicit in interest rate derivatives. Journal of Empirical Finance, 17, 722–743.

    Article  Google Scholar 

  • Heston, S. L. (1993). A closed form solution for options with stochastic volatility with applications to bond and currency options. The Review of Financial Studies, 6, 327–344.

    Article  Google Scholar 

  • Hull, J., & White, A. (1987). The pricing of options on assets with stochastic volatilities. The Journal of Finance, 42, 281–300.

    Article  MATH  Google Scholar 

  • Jacod, J., & Shiryaev, A. N. (1987). Limit theorems for stochastic processes. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Jamshidian, F. (1989). An exact bond option pricing formula. The Journal of Finance, 44, 205–209.

    Article  Google Scholar 

  • Jamshidian, F. (1997). Libor and swap market models and measures. Finance and Stochastics, 1, 293–330.

    Article  MATH  Google Scholar 

  • Lee, R. (2010). Weighted variance swaps. In Encyclopedia of quantitative finance. New York: Wiley.

    Google Scholar 

  • Martin, I. (2013). Simple variance swaps. Working paper, Stanford University.

    Google Scholar 

  • Mele, A. (2014). Lectures on financial economics. Book manuscript. Available from: http://www.antoniomele.org.

  • Mele, A., & Obayashi, Y. (2012). An interest rate swap volatility index and contract. Technical white paper underlying the CBOE interest rate swap volatility index. Available from: http://www.cboe.com/micro/srvix/default.aspx.

  • Mele, A., & Obayashi, Y. (2015). Interest rate derivatives and volatility. In P. Veronesi (Ed.), Handbook series in financial engineering and econometrics. The handbook of fixed income securities, New York: Wiley. Forthcoming.

    Google Scholar 

  • Mele, A., Obayashi, Y., & Shalen, C. (2015a). Rate fears gauges and the dynamics of interest rate swap and equity volatility. Journal of Banking & Finance, 52, 256–265.

    Article  Google Scholar 

  • Merener, N. (2012). Swap rate variance swaps. Quantitative Finance, 12, 249–261.

    Article  MathSciNet  MATH  Google Scholar 

  • Neuberger, A. (1994). Hedging volatility: the case for a new contract. The Journal of Portfolio Management, 20, 74–80.

    Article  Google Scholar 

  • Øksendal, B. (1998). Stochastic differential equations—an introduction with applications. Berlin: Springer.

    MATH  Google Scholar 

  • Renault, E. (1997). Econometric models of option pricing errors. In D. Kreps & K. Wallis (Eds.), Advances in economics and econometrics—theory and applications, Cambridge: Cambridge University Press.

    Google Scholar 

  • Schönbucher, P. J. (2003). Credit risk pricing models—models, pricing and implementation. Chichester: Wiley Finance.

    Google Scholar 

  • Vasicek, O. A. (1977). An equilibrium characterization of the term structure. Journal of Financial Economics, 5, 177–188.

    Article  Google Scholar 

  • Whaley, R. E. (1993). Derivatives on market volatility: hedging tools long overdue. The Journal of Derivatives, 1, 71–84.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix A: Appendix on Security Design and Volatility Indexing

Appendix A: Appendix on Security Design and Volatility Indexing

2.1.1 A.1 Proof of Proposition 2.2

We begin with the following preliminary result, from which Eqs. (2.6)–(2.7) follow for \(Y_{t}=N_{t}\). Note that the arguments in this proof rely on spanning arguments similar to those utilized by Bakshi and Madan (2000) and Carr and Madan (2001) in the equity case, although centered around the notion of a market numéraire. We then provide the proof of the proposition with general stochastic multipliers.

Lemma A.1

We have:

$$ \mathbb{E}_{t}^{Q^{N}} \bigl( V^{\mathrm{bp}} ( t,T ) \bigr) = \frac{2}{N_{t}} \biggl( \int_{0}^{X_{t}} \mathrm{Put}_{t} ( K ) dK+\int_{X_{t}}^{\infty} \mathrm{Call}_{t} ( K ) dK \biggr) , $$
(A.1)

and

$$ \mathbb{E}_{t}^{Q^{N}} \bigl( V ( t,T ) \bigr) = \frac {2}{N_{t}} \biggl( \int_{0}^{X_{t}} \frac{\mathrm{Put}_{t} ( K ) }{K^{2}}dK+\int_{X_{t}}^{\infty} \frac{\mathrm {Call}_{t} ( K ) }{K^{2}}dK \biggr) . $$
(A.2)

Proof

We provide the proof of Eq. (A.1), as that of Eq. (A.2) follows as a special case of the arguments leading to Eq. (A.19) and Eq. (A.20) in Appendix A.5 regarding the jump-diffusion case. By Itô’s lemma,

$$ \mathbb{E}_{t}^{Q^{N}} \bigl( V^{\mathrm{bp}} ( t,T ) \bigr) = \mathbb{E}_{t}^{Q^{N}} \bigl( X_{T}^{2}-X_{t}^{2} \bigr) . $$
(A.3)

Moreover, by a Taylor expansion with remainder,

$$ X_{T}^{2}-X_{t}^{2}=2X_{t} ( X_{T}-X_{t} ) +2 \biggl( \int _{0}^{X_{t}} ( K-X_{T} ) ^{+}dK+\int _{X_{t}}^{\infty} ( X_{T}-K ) ^{+}dK \biggr) . $$
(A.4)

Multiplying both sides of the previous equation by \(e^{-\int_{t}^{T}r_{u}du}N_{T}\), and taking expectation under the risk-neutral probability leaves

$$\begin{aligned} \mathbb{E}_{t} \bigl( e^{-\int_{t}^{T}r_{u}du}N_{T} \bigl( X_{T}^{2}-X_{t}^{2} \bigr) \bigr) & =2X_{t}\mathbb{E}_{t} \bigl( e^{-\int _{t}^{T}r_{u}du}N_{T} ( X_{T}-X_{t} ) \bigr) \\ &\quad{} +2 \biggl( \int_{0}^{X_{t}}\mathbb{E}_{t} \bigl( e^{-\int _{t}^{T}r_{u}du}N_{T} ( K-X_{T} ) ^{+} \bigr) dK \\ &\quad{}+\int _{X_{t}}^{\infty}\mathbb{E}_{t} \bigl( e^{-\int _{t}^{T}r_{u}du}N_{T} ( X_{T}-K ) ^{+} \bigr) dK \biggr) \\ & =2 \biggl( \int_{0}^{X_{t}}\mathrm{Put}_{t} ( K ) dK+\int _{X_{t}}^{\infty}\mathrm{Call}_{t} ( K ) dK \biggr) , \end{aligned}$$
(A.5)

where the last line follows by a change of probability, from \(Q\) to \(Q^{N}\),

$$ \frac{dQ^{N}}{dQ}\bigg\vert _{\mathbb{F}_{T}}=\frac{e^{-\int _{t}^{T}r_{u}du}N_{T}}{N_{t}}, $$

the martingale property of \(X_{\tau}\) under \(Q^{N}\), and the expressions for \(\mathrm{Put}_{t} ( K ) \) and \(\mathrm{Call}_{t} ( K ) \) in Definition 2.2. By the assumption that \(N_{\tau}\) is the price of a traded asset, and \(N_{\tau}>0\), \(dQ^{N}\) integrates to one. Similarly, by a change of probability,

$$ \mathbb{E}_{t} \bigl( e^{-\int_{t}^{T}r_{u}du}N_{T} \bigl( X_{T}^{2}-X_{t}^{2} \bigr) \bigr) =N_{t}\mathbb{E}_{t}^{Q^{N}} \bigl( X_{T}^{2}-X_{t}^{2} \bigr) . $$
(A.6)

Combining Eqs. (A.5) and (A.6) with Eq. (A.3) yields Eq. (A.1). □

Next, we prove the claims of Proposition 2.2 regarding basis point variance, \(V^{\mathrm{bp}} ( t,T ) \); those for percentage variance \(V ( t,T ) \) follow through a mere change in notation. We only prove the “only if” part, as the “if” part is trivial from the derivation of the proof to follow. Consider the Radon–Nikodym derivative of \(Q^{Y}\) against \(Q^{N}\),

$$ \zeta_{T}\equiv\frac{dQ^{Y}}{dQ^{N}}\bigg\vert _{\mathbb{F}_{T}}, $$

and suppose on the contrary that there exists a stochastic multiplier \(Y_{T}\) such that

$$ \mathrm{cov}^{Q^{N}} \bigl( V^{\mathrm{bp}} ( t,T ) ,\zeta _{T} \bigr) \neq0, $$

and that at the same time,

$$ \mathbb{E}_{t}^{Q^{Y}} \bigl( V^{\mathrm{bp}} ( t,T ) \bigr) = \mathbb{E}_{t}^{Q^{N}} \bigl( V^{\mathrm{bp}} ( t,T ) \bigr) . $$

In this case, Eqs. (A.3) and (A.5) would imply that the conclusions of Lemma A.1 hold. However, we also have:

$$ \mathbb{E}_{t}^{Q^{Y}} \bigl( V^{\mathrm{bp}} ( t,T ) \bigr) = \mathbb{E}_{t}^{Q^{N}} \bigl( V^{\mathrm{bp}} ( t,T ) \bigr) + \mathrm{cov}^{Q^{N}} \bigl( V^{\mathrm{bp}} ( t,T ) ,\zeta _{T} \bigr) . $$

Then, \(\mathrm{cov}^{Q^{N}} ( V^{\mathrm{bp}} ( t,T ) ,\zeta _{T} ) =0\), a contradiction. Proposition 2.2 follows by Proposition 2.1 in the main text and Lemma A.1. □

2.1.2 A.2 A Stochastic Multiplier Beyond the Market NumÉraire

Consider the following stochastic multiplier, \(Y_{T}=N_{T}\epsilon_{T}\), where \(\epsilon_{T}\) is \(\mathbb{F}_{T}\)-measurable, and such that \(\mathrm{cov}^{Q^{N}} ( V^{\mathrm{bp}} ( t,T ) ,\epsilon _{T} ) =0\). We have,

$$ \zeta_{T}\equiv\frac{dQ^{Y}}{dQ^{N}}\bigg\vert _{\mathbb {F}_{T}}=c_{t} \epsilon_{T},\quad\text{with }c_{t}\equiv\frac {\mathbb{E}_{t} ( e^{-\int_{t}^{T}r_{u}du}N_{T} ) }{\mathbb{E}_{t} ( e^{-\int_{t}^{T}r_{u}du}N_{T}\epsilon _{T} ) }. $$

Heuristically,

$$ \zeta_{T}=\biggl( \frac{dQ^{Y}}{dQ}:\frac{dQ^{N}}{dQ} \biggr) \bigg\vert _{\mathbb{F}_{T}}=\frac{e^{-\int _{t}^{T}r_{u}du}Y_{T}}{\mathbb{E}_{t} ( e^{-\int _{t}^{T}r_{u}du}Y_{T} ) }:\frac{e^{-\int _{t}^{T}r_{u}du}N_{T}}{\mathbb{E}_{t} ( e^{-\int _{t}^{T}r_{u}du}N_{T} ) }= \epsilon_{T}c_{t}. $$

Next, we claim that

$$ \mathrm{cov}^{Q^{N}} \bigl( V^{\mathrm{bp}} ( t,T ) ,\zeta _{T} \bigr) =c_{t}\cdot\mathrm{cov}^{Q^{N}} \bigl( V^{\mathrm{bp}} ( t,T ) ,\epsilon_{T} \bigr) =0, $$

as in the class of multipliers identified by Proposition 2.2. Indeed, we have:

$$ \mathbb{E}_{t}^{Q^{Y}} \bigl( V^{\mathrm{bp}} ( t,T ) \bigr) =c_{t}\mathbb{E}_{t}^{Q^{N}} ( \epsilon_{T} ) \mathbb {E}_{t}^{Q^{N}} \bigl( V^{\mathrm{bp}} ( t,T ) \bigr) =\mathbb {E}_{t}^{Q^{N}} \bigl( V^{\mathrm{bp}} ( t,T ) \bigr) , $$

where the first equality follows by the fact that \(\epsilon_{T}\) is uncorrelated with \(V^{\mathrm{bp}} ( t,T ) \), and the second follows by the definition of \(c_{t}\),

$$ \mathbb{E}_{t}^{Q^{N}} ( \epsilon_{T} ) = \frac {1}{N_{t}}\mathbb{E}_{t} \bigl( e^{-\int _{t}^{T}r_{u}du}N_{T} \epsilon_{T} \bigr) =\frac{1}{c_{t}}. $$

2.1.3 A.3 Vega and Gamma in Gaussian Markets

We first show Eq. (2.9) (“Constant volatility”), then prove that the statement in (2.21) is true (“Constant vega”) and, finally, validate our claims regarding the implications on gamma of option portfolios (“Constant gamma exposure”). In what follows, we assume that the portfolio weightings and their first order derivative are integrable with respect to the Gaussian distribution, (i) \(E ( \vert \omega ( \tilde {y} ) \vert ) <\infty\) and \(E(\int_{-\infty }^{0}\vert \omega ( u ) u\vert \varPhi ( u ) du)<\infty\), and (ii) \(E ( \vert \omega^{\prime} ( \tilde{y} ) \vert ) <\infty\), where \(\tilde{y}\) is Gaussian. The first two conditions are necessary for the existence of an abstract volatility index based on at-the-money and out-of-the-money options in a Gaussian market (see Eqs. (A.7) and (A.8) below). The second is a regularity condition needed while dealing with boundedness of the sensitivity of vega with respect to the forward risk, \(X_{t}\).

We shall rely on the following result. Consider the market in Sects. 2.2 and 2.3. If the forward risk \(X_{t}\) is a solution to Eq. (2.8), the prices of put and call options are given by the “Bachelier formulae” (see Eq. (2.24) in the main text):

$$ \begin{aligned} \mathcal{O}_{t}^{\mathrm{P}} ( X_{t},K,T,\hat{ \sigma}_{\mathrm {n}} ) &\equiv N_{t}\cdot\mathcal{Z}_{t}^{\mathrm{P}} ( X_{t},K,T,\hat{\sigma}_{\mathrm{n}} ) ,\\ \mathcal {O}_{t}^{\mathrm{C}} ( X_{t},K,T,\hat{ \sigma}_{\mathrm{n}} ) &\equiv N_{t}\cdot\mathcal {Z}_{t}^{\mathrm{C}} ( X_{t},K,T,\hat{\sigma}_{\mathrm{n}} ) , \end{aligned} $$
(A.7)

where \(\hat{\sigma}_{\mathrm{n}}\equiv\sqrt{\Vert \sigma _{\mathrm{n}}\Vert ^{2}}\),

$$\begin{aligned} \mathcal{Z}_{t}^{\mathrm{P}} ( X,K,T,\sigma ) =& ( K-X ) \varPhi \biggl( \frac{K-X}{\sigma\sqrt{T-t}} \biggr) +\sigma\sqrt{T-t}\phi \biggl( \frac{X-K}{\sigma\sqrt{T-t}} \biggr) , \\ \mathcal{Z}_{t}^{\mathrm{C}} ( X,K,T,\sigma ) =& ( X-K ) \varPhi \biggl( \frac{X-K}{\sigma\sqrt{T-t}} \biggr) +\sigma\sqrt{T-t}\phi \biggl( \frac{X-K}{\sigma\sqrt{T-t}} \biggr) , \end{aligned}$$

and \(\phi\) denotes the standard normal density.

Constant volatility. Plugging Eq. (A.7) into Eq. (2.6) leaves, after substituting the expressions \(\mathrm{Put}_{t} ( K ) \equiv\mathcal{O}_{t}^{\mathrm{P}} ( X,K,T,\hat{\sigma}_{\mathrm {n}} ) \) and \(\mathrm{Call}_{t} ( K ) \equiv\mathcal {O}_{t}^{\mathrm{C}} ( X,K,T,\hat{\sigma}_{\mathrm{n}} ) \), and extending the left limit of the first integral in Eq. (2.6) to \(-\infty\),

$$\begin{aligned} \frac{1}{2}K_{Y}& =\sigma^{2} ( T-t ) +\int _{-\infty }^{X} ( K-X ) \varPhi \biggl( \frac{K-X}{\sigma\sqrt{T-t}} \biggr) dK \\ &\quad{}+\int_{X}^{\infty} ( X-K ) \varPhi \biggl( \frac {X-K}{\sigma\sqrt{T-t}} \biggr) dK \\ & =\sigma^{2} ( T-t ) \biggl[ 1+2\int_{-\infty }^{0}u \varPhi ( u ) du \biggr] \\ & =\sigma^{2} ( T-t ) \biggl[ 1+2 \biggl( -\frac{1}{2}\int _{-\infty}^{0}u^{2}\phi ( u ) du \biggr) \biggr] \\ & =\frac{1}{2}\sigma^{2} ( T-t ) , \end{aligned}$$

where the first equality follows by the property of the normal distribution that, \(\int_{-\infty}^{\infty}\phi ( \frac{X-K}{\nu } ) dK=\nu\) for \(\nu>0\), and the second holds by a change in variables, the third by an integration by parts, and the fourth by a basic property of the standard normal distribution.

Constant vega. We prove that in Gaussian markets, a portfolio with all out-of-the-money and at-the-money European options has constant vega if and only if these options are equally weighted. The value of the portfolio we consider is a special case of Eq. (2.19),

$$\begin{aligned} &\pi_{t} ( X,T,\sigma ) \\ &\quad=N_{t} \biggl( \int _{-\infty}^{X}\omega ( K ) \mathcal{Z}_{t}^{\mathrm{P}} ( X,K,T,\sigma ) dK+\int_{X}^{\infty}\omega ( K ) \mathcal{Z}_{t}^{\mathrm {C}} ( X,K,T,\sigma ) dK \biggr) , \end{aligned}$$
(A.8)

where \(\mathcal{Z}_{t}^{\mathrm{P}}\) and \(\mathcal{Z}_{t}^{\mathrm{C}}\) are as in Eqs. (A.7).

Note that the vega of a put is the same as the vega of a call, and equals \(N_{t}\nu_{t}^{\mathcal{O}} ( X,K,T,\sigma ) \), where:

$$\begin{aligned} \nu_{t}^{\mathcal{O}} ( X,K,T,\sigma ) &\equiv\frac{\partial \mathcal{Z}_{t}^{\mathrm{P}} ( X,K,T,\sigma ) }{\partial \sigma}= \frac{\partial\mathcal{Z}_{t}^{\mathrm{C}} ( X,K,T,\sigma ) }{\partial\sigma}\\ &=\sqrt{T-t}\phi \biggl( \frac{X-K}{\sigma \sqrt{T-t}} \biggr) , \end{aligned}$$

so that the vega of the portfolio is:

$$ \nu_{t} ( X,T,\sigma ) \equiv\frac{\partial\pi_{t} ( X,T,\sigma ) }{\partial\sigma}=N_{t} \sqrt{T-t}\int\omega ( K ) \phi \biggl( \frac{X-K}{\sigma\sqrt{T-t}} \biggr) dK. $$
(A.9)

As for the “if” part in (2.21), let \(\omega ( K ) =\mathrm{const.}\), so that by Eq. (A.9), and the fact that the Gaussian density \(\phi\) integrates to one, we have that the vega is independent of \(X\):

$$ \nu_{t} ( X,T,\sigma ) =N_{t}\sqrt{T-t}\cdot \mathrm{const.} $$

As for the “only if” part, let us differentiate \(\nu_{t} ( X,T,\sigma ) \) in Eq. (A.9) with respect to \(X\):

$$ \frac{\partial\nu_{t} ( X,T,\sigma ) }{\partial X}=-\frac {N_{t}}{\sigma^{2}\sqrt{T-t}}\int\omega ( K ) \phi \biggl( \frac{X-K}{\sigma\sqrt{T-t}} \biggr) ( X-K ) dK. $$

We claim that the constant weighting is the only function \(\omega\) independent of \(X\), and such that \(\frac{\partial\nu_{t} ( X,T,\sigma ) }{\partial X}=0\). Suppose not, and note that \(\frac{\partial\nu _{t} ( X,T,\sigma ) }{\partial X}\) is zero if and only if,

$$ X\int\omega ( K ) \phi \biggl( \frac{X-K}{\sigma\sqrt {T-t}} \biggr) dK=\int K\omega ( K ) \phi \biggl( \frac {X-K}{\sigma\sqrt{T-t}} \biggr) dK. $$

Let us moreover define a random variable \(\tilde{y}\sim N ( \mu ,\sigma ^{2} ( T-t ) ) \). In terms of \(\tilde{y}\), the previous equality is, by Stein’s Lemma,

$$\begin{aligned} \mu E \bigl[ \omega ( \tilde{y} ) \bigr] &=E \bigl[ \tilde {y}\omega ( \tilde{y} ) \bigr] =\mu E \bigl[ \omega ( \tilde {y} ) \bigr] +\mathrm{cov} \bigl[ \tilde{y},\omega ( \tilde{y} ) \bigr]\\ & =\mu E \bigl[ \omega ( \tilde{y} ) \bigr] +E \bigl[ \omega^{\prime } ( \tilde{y} ) \bigr] \sigma^{2} ( T-t ) , \end{aligned}$$

which is a contradiction unless \(\omega ( \cdot ) \) is constant.

Remark A.1

By Proposition 2.2, and previous results in this appendix, the normalized value of the portfolio in Eq. (A.8) is \(\sigma^{2}\), in the special case \(\omega ( K ) =2\),

$$ \sqrt{\frac{\pi_{t} ( X_{t},T,\sigma ) }{N_{t}}}=\sigma\sqrt{T-t}. $$

We illustrate this fact numerically. We set \(X_{t}=5~\%\), \(T-t=1\) (one year) and \(\sigma=150~\mbox{bps}\), and approximate the integral in Eq. (A.8),

$$\begin{aligned} &100^{2}\times\sqrt{\frac{\hat{\pi}_{t} ( X_{t},T,\sigma ) }{N_{t}}}\\ &\quad\approx100^{2}\times \sqrt{2 \biggl( \sum _{i:K_{i}< X_{t}}\mathcal{Z}_{t}^{\mathrm{P}} ( X_{t},K_{i},T,\sigma ) +\sum _{i:K_{i}\geq X_{t}} \mathcal{Z}_{t}^{\mathrm{C}} ( X_{t},K_{i},T, \sigma ) \biggr) \Delta K}\\ &\quad\approx150.3907, \end{aligned}$$

where \(\min_{i} \{ K_{i} \} =0\), \(\max_{i} \{ K_{i} \} =10~\%\), \(\Delta K=0.0001\).

Constant gamma exposure. Our claim of a constant gamma exposure in a Gaussian market follows because the option price in Eq. (A.7) satisfies,

$$ \frac{\partial^{2}\mathcal{O}_{t}^{\mathrm{U}} ( X,K,T,\sigma ) }{\partial X^{2}}=N_{t}\frac{1}{\sigma ( T-t ) }\nu _{t}^{\mathcal{O}} ( X,K,T,\sigma ) , $$

where \(\mathcal{O}_{t}^{\mathrm{U}} ( X,K,T,\sigma ) \), \(\mathrm{U}\in \{ \mathrm{P},\mathrm{C} \} \) denotes an out-of-the-money option price (see Eq. (A.7)). Therefore, we have

$$\begin{aligned} \frac{\partial^{2}\pi_{t} ( X,T,\sigma ) }{\partial X^{2}}& =\int\omega ( K ) \frac{\partial^{2}\mathcal{O}_{t}^{\mathrm {U}} ( X,K,T,\sigma ) }{\partial X^{2}}dK \\ & =\frac{1}{\sigma ( T-t ) }\int\omega ( K ) \frac {\partial\mathcal{O}_{t}^{\mathrm{U}} ( X,K,T,\sigma ) }{\partial \sigma}dK \\ & =\frac{1}{\sigma ( T-t ) }\frac{\partial\pi_{t} ( X,T,\sigma ) }{\partial\sigma}. \end{aligned}$$
(A.10)

The L.H.S. of this equation is independent of \(X\) if and only if the R.H.S. is. That is, the gamma exposure of the portfolio is constant if and only if the portfolio vega is independent of \(X\), as claimed in the main text.

2.1.4 A.4 Proof of Proposition 2.3

For simplicity, we suppress the dependence of all the variables and functions on \(t\) and \(T\). Assuming the zero homogeneity assumption is satisfied by the implied volatility \(\sigma_{K}\equiv\sigma ( X,K ) \), we have that the two Black pricers, \(\mathcal{P} ( X,K,\sigma_{K} ) \equiv\mathrm{Put} ( K ) \) and \(\mathcal{C} ( X,K,\sigma_{K} ) \equiv\mathrm{Call} ( K ) \), collapse to

$$ \mathcal{P} ( X,K,\sigma_{K} ) =K\varphi_{\mathrm {p}}^{1} ( u ) -X\varphi_{\mathrm{p}}^{2} ( u ) ,\qquad\mathcal {C} ( X,K, \sigma_{K} ) =X\varphi_{\mathrm{c}}^{1} ( u ) -K\varphi _{\mathrm{c}}^{2} ( u ) , $$
(A.11)

for some functions \(\varphi_{\mathrm{p}}^{i} ( x ) \) and \(\varphi _{\mathrm{c}}^{i} ( x ) \) of the moneyness \(u\equiv\ln ( \frac{K}{X} )\). Substituting the two expressions in Eqs. (A.11) into Eq. (2.6) of Proposition 2.2, and making the change of variable \(K\mapsto u\), leaves,

$$\begin{aligned} &\mathrm{{V}}^{\mathrm{bp}}=X^{2}\cdot\xi,\\ &\quad \xi \equiv \frac{2}{N} \biggl( \int_{-\infty}^{0} \bigl( e^{u}\varphi _{\mathrm{p}}^{1} ( u ) - \varphi_{\mathrm{p}}^{2} ( u ) \bigr) e^{u}du+\int _{0}^{\infty} \bigl( \varphi_{\mathrm {c}}^{1} ( u ) -e^{u}\varphi_{\mathrm{c}}^{2} ( u ) \bigr) e^{u}du \biggr) , \end{aligned}$$

where \(N\) is the market numéraire at \(t\), and the function \(\xi\) is independent of \(X\), establishing Part (i) of the proposition. Part (ii) is similar. Substituting \(\mathcal{P} ( X,K,\sigma_{K} ) \) and \(\mathcal{C} ( X,K,\sigma_{K} ) \) in Eq. (A.11) into Eq. (2.7) of Proposition 2.2, and by changing the variable of integration to \(u=\ln \frac{K}{X}\), leaves

$$ \mathrm{{V}}=\frac{2}{N} \biggl( \int_{-\infty}^{0} \bigl( \varphi_{\mathrm{p}}^{1} ( u ) -e^{-u} \varphi_{\mathrm {p}}^{2} ( u ) \bigr) du+\int_{0}^{\infty} \bigl( e^{-u}\varphi_{\mathrm{c}}^{1} ( u ) - \varphi_{\mathrm {c}}^{2} ( u ) \bigr) du \biggr) , $$

which is independent of \(X\). □

2.1.5 A.5 Approximating Indexes

We derive Eq. (2.34) and Eq. (2.35). We begin with Eq. (2.35). Substituting Eq. (A.11) into Eq. (2.33) yields, for \(\ell\in ( 0,X ) \),

$$ \mathrm{{V}}_{\ell}=\frac{2}{N} \biggl( \int _{\ln ( \frac{X-\ell}{X} ) }^{0} \bigl( \varphi_{\mathrm{p}}^{1} ( u ) -e^{-u}\varphi_{\mathrm{p}}^{2} ( u ) \bigr) du+\int _{0}^{\ln ( \frac{X+\ell}{X} ) } \bigl( e^{-u} \varphi_{\mathrm{c}}^{1} ( u ) -\varphi_{\mathrm {c}}^{2} ( u ) \bigr) du \biggr) , $$

so that,

$$\begin{aligned} \frac{\partial\mathrm{{V}}_{\ell}}{\partial X}&=\frac{2}{N} \biggl( - \bigl( \varphi_{\mathrm{p}}^{1} ( u ) -e^{-u}\varphi _{\mathrm{p}}^{2} ( u ) \bigr) \big\vert _{u=\ln ( \frac{X-\ell}{X} ) }\cdot \frac{\ell}{X ( X-\ell ) }\\ &\quad{}+\bigl( e^{-u}\varphi_{\mathrm{c}}^{1} ( u ) -\varphi_{\mathrm {c}}^{2} ( u ) \bigr) \big\vert _{u=\ln ( \frac {X+\ell}{X} ) }\cdot\frac{-\ell}{X ( X+\ell ) } \biggr) . \end{aligned}$$

Utilizing the expressions in Eq. (A.11) delivers Eq. (2.35). The proof of Eq. (2.34) proceeds similarly: substitute Eq. (A.11) into Eq. (2.32) to obtain, for \(\ell\in ( 0,X ) \),

$$ \mathrm{{V}}_{\ell}^{\mathrm{{BP}}}=X^{2}\times \xi_{\ell,X}, $$
(A.12)

where,

$$ \xi_{\ell,X}\equiv\frac{2}{N} \biggl( \int_{\ln ( \frac {X-\ell}{X} ) }^{0} \bigl( e^{u}\varphi_{\mathrm{p}}^{1} ( u ) - \varphi_{\mathrm{p}}^{2} ( u ) \bigr) e^{u}du+\int _{0}^{\ln ( \frac{X+\ell}{X} ) } \bigl( \varphi _{\mathrm{c}}^{1} ( u ) -e^{u}\varphi_{\mathrm{c}}^{2} ( u ) \bigr) e^{u}du \biggr) . $$

We have

$$\begin{aligned} \frac{\partial\xi_{\ell,X}}{\partial X}& =\frac{2}{N} \biggl( - \bigl( e^{u} \varphi_{\mathrm{p}}^{1} ( u ) -\varphi_{\mathrm {p}}^{2} ( u ) \bigr) e^{u}\big\vert _{u=\ln ( \frac {X-\ell}{X} ) }\cdot\frac{\ell}{X ( X-\ell ) }\\ &\quad{}+ \bigl( \varphi_{\mathrm{c}}^{1} ( u ) -e^{u} \varphi_{\mathrm {c}}^{2} ( u ) \bigr) \big\vert _{u=\ln ( \frac {X+\ell}{X} ) }\cdot \frac{-\ell}{X ( X+\ell ) } \biggr) \\ & =-\frac{2\ell}{NX^{3}} \bigl( \mathrm{Put} \bigl( X,K,\sigma ( X,K ) \bigr) \big\vert _{{K=X-\ell}}+\mathrm {Call} \bigl( X,K,\sigma ( X,K ) \bigr) \big\vert _{{K=X+\ell}} \bigr) , \end{aligned}$$

where the second equality follows by the expressions in Eq. (A.11). Equation (2.34) follows by straightforward differentiation of Eq. (A.12).

Next we show that Eqs. (2.34) and (2.36) are mutually consistent. We have

$$\begin{aligned} & \frac{\partial}{\partial X}\int_{X-\ell}^{X}\mathrm {Put} \bigl( X,K,\sigma ( X,K ) \bigr) dK \\ &\quad =\mathrm{Put} \bigl( X,K,\sigma ( X,K ) \bigr) \big\vert _{{K=X}}-\mathrm{Put} \bigl( X,K,\sigma ( X,K ) \bigr) \big\vert _{{K=X-\ell}} \\ &\qquad{}+\int_{X-\ell }^{X} \partial_{X}\mathrm{Put} \bigl( X,K,\sigma ( X,K ) \bigr) dK \\ &\quad = \mathrm{Put} \bigl( X,K,\sigma ( X,K ) \bigr) \big\vert _{{K=X}}-\mathrm{Put} \bigl( X,K,\sigma ( X,K ) \bigr) \big\vert _{{K=X-\ell}} \\ &\qquad{}+\frac{1}{X}\int_{X-\ell }^{X} \mathrm{Put} \bigl( X,K,\sigma ( X,K ) \bigr) dK \\ &\qquad{} -\frac{1}{X}\int_{X-\ell}^{X}K\cdot \partial_{K}\mathrm {Put} \bigl( X,K,\sigma ( X,K ) \bigr) dK, \end{aligned}$$
(A.13)

where the second equality follows by the assumption the implied volatilities are homogenous of degree zero in \(( X,K ) \), so that \(\mathrm {Put} ( \cdot ) =X\cdot\partial_{X}\mathrm{Put} ( \cdot) +K\cdot\partial_{K}\mathrm{Put} ( \cdot ) \). An integration by parts of the last term in Eq. (A.13) produces

$$\begin{aligned} & \int_{X-\ell}^{X}K\cdot\partial_{K} \mathrm{Put} \bigl( X,K,\sigma ( X,K ) \bigr) dK \\ &\quad =X\cdot\mathrm{Put} \bigl( X,K,\sigma ( X,K ) \bigr) \big\vert _{{K=X}}- ( X-\ell ) \cdot\mathrm {Put} \bigl( X,K,\sigma ( X,K ) \bigr) \big\vert _{{K=X-\ell }} \\ &\qquad{}-\int_{X-\ell}^{X} \mathrm{Put} \bigl( X,K,\sigma ( X,K ) \bigr) dK. \end{aligned}$$

Substituting this term into Eq. (A.13) leaves

$$\begin{aligned} &\frac{\partial}{\partial X}\int_{X-\ell}^{X}\mathrm {Put} \bigl( X,K,\sigma ( X,K ) \bigr) dK \\ &\quad=\frac{2}{X}\int _{X-\ell }^{X}\mathrm{Put} \bigl( X,K,\sigma ( X,K ) \bigr) dK- \frac {\ell}{X}\mathrm{Put} \bigl( X,K,\sigma ( X,K ) \bigr) \big\vert _{{K=X-\ell}}. \end{aligned}$$
(A.14)

Similarly,

$$\begin{aligned} &\frac{\partial}{\partial X}\int_{X}^{X+\ell}\mathrm {Call} \bigl( X,K,\sigma ( X,K ) \bigr) dK \\ &\quad=\frac{2}{X}\int _{X}^{X+\ell }\mathrm{Call} \bigl( X,K,\sigma ( X,K ) \bigr) dK- \frac{\ell }{X}\mathrm{Call} \bigl( X,K,\sigma ( X,K ) \bigr) \big\vert _{{K=X+\ell}}. \end{aligned}$$
(A.15)

Equation (2.34) now follows by taking derivatives with respect to \(X\) in Eq. (2.32), using Eqs. (A.14)–(A.15), and rearranging terms.

2.1.6 A.6 Jumps

We derive the expression for the fair value of \(K_{Y}\) in Proposition 2.2 under the assumption that the forward risk \(X_{t}\) is a solution to the jump-diffusion process in Eq. (2.39).

Basis point. Apply Itô’s lemma for jump-diffusion processes to Eq. (2.39), obtaining,

$$\begin{aligned} \frac{dX_{\tau}^{2}}{X_{\tau}^{2}}& =-2 \bigl( \mathbb{E}_{\tau }^{Q^{N}} \bigl( e^{j_{\tau}}-1 \bigr) \eta_{\tau} \bigr) d\tau +2\sigma _{\tau}\cdot dW_{\tau}+\Vert \sigma_{\tau} \Vert ^{2}d\tau + \bigl( e^{2j_{\tau}}-1 \bigr) dJ_{\tau} \\ & =-2 \bigl( \mathbb{E}_{\tau}^{Q^{N}} \bigl( e^{j_{\tau}}-1 \bigr) \eta _{\tau} \bigr) d\tau+2 \bigl( e^{j_{\tau}}-1 \bigr) dJ_{\tau}+2\sigma _{\tau}\cdot dW_{\tau}+\Vert \sigma_{\tau} \Vert ^{2}d\tau \\ &\quad{}+ \bigl( e^{j_{\tau}}-1 \bigr) ^{2}dJ_{\tau}. \end{aligned}$$

By integrating, taking expectations under \(Q^{N}\), and using the definition of basis point variance, \(V_{J}^{\mathrm{bp}} ( t,T ) \) in Eq. (2.41), leaves:

$$\begin{aligned} & \mathbb{E}_{t}^{Q^{N}} \bigl( X_{T}^{2}-X_{t}^{2} \bigr) \\ &\quad = \underset{=0}{\underbrace{-2\mathbb{E}_{t}^{Q^{N}} \biggl( \int _{t}^{T}X_{\tau}^{2} \bigl( \mathbb{E}_{\tau}^{Q^{N}} \bigl( e^{j_{\tau}}-1 \bigr) \eta_{\tau} \bigr) d\tau \biggr) +2\mathbb {E}_{t}^{Q^{N}} \biggl( \int_{t}^{T}X_{\tau}^{2} \bigl( e^{j_{\tau }}-1 \bigr) dJ_{\tau} \biggr) }} \\ &\qquad{} + \underset{=0}{\underbrace{2\mathbb{E}_{t}^{Q^{N}} \biggl( \int _{t}^{T}X_{\tau}^{2} \sigma_{\tau}^{2}\cdot dW_{\tau} \biggr) }} +\mathbb{E}_{t}^{Q^{N}}\bigl[V_{J}^{\mathrm{bp}} ( t,T ) \bigr], \end{aligned}$$
(A.16)

where the first term is zero as,

$$\begin{aligned} \mathbb{E}_{t}^{Q^{N}} \biggl( \int_{t}^{T}X_{\tau}^{2} \bigl( e^{j_{\tau}}-1 \bigr) dJ_{\tau} \biggr) & = \mathbb{E}_{t}^{Q^{N}} \biggl( \int_{t}^{T} \mathbb{E}_{\tau}^{Q^{N}} \bigl( X_{\tau }^{2} \bigl( e^{j_{\tau}}-1 \bigr) dJ_{\tau} \bigr) \biggr) \\ & =\mathbb{E}_{t}^{Q^{N}} \biggl( \int_{t}^{T}X_{\tau}^{2} \bigl( \mathbb{E}_{\tau}^{Q^{N}} \bigl( e^{j_{\tau}}-1 \bigr) \eta_{\tau } \bigr) d\tau \biggr) . \end{aligned}$$
(A.17)

Comparing Eq. (A.16) with Eqs. (A.5) and (A.6) and then (2.6) leads to the conclusions of the main text, and in particular to Eq. (2.43).

Percentage. First, apply Itô’s lemma to Eq. (2.39), obtaining Eq. (2.40), viz

$$\begin{aligned} d\ln X_{\tau}& =- \bigl( \mathbb{E}_{\tau}^{Q^{N}} \bigl( e^{j_{\tau }}-1 \bigr) \eta_{\tau} \bigr) d\tau-\frac{1}{2} \Vert \sigma _{\tau }\Vert ^{2}d\tau+\sigma_{\tau} \cdot dW_{\tau}+j_{\tau }dJ_{\tau} \\ & =-\frac{1}{2} \bigl( \Vert \sigma_{\tau} \Vert ^{2}d\tau +j_{\tau}^{2}dJ_{\tau} \bigr) + \sigma_{\tau}\cdot dW_{\tau}- \bigl( \mathbb{E}_{\tau}^{Q^{N}} \bigl( e^{j_{\tau}}-1 \bigr) \eta_{\tau } \bigr) d \tau \\ &\quad{}+j_{\tau}dJ_{\tau}+\frac{1}{2}j_{\tau}^{2}dJ_{\tau}, \end{aligned}$$
(A.18)

so that, by the definition of \(V_{J} ( t,T ) \) in Eq. (2.42) and (by arguments similar to those leading to Eq. (A.17)),

$$ \mathbb{E}_{\tau}^{Q^{N}} \bigl( e^{j_{\tau}}-1 \bigr) dJ_{\tau}= \bigl( \mathbb{E}_{\tau}^{Q^{N}} \bigl( e^{j_{\tau}}-1 \bigr) \eta_{\tau } \bigr) d\tau, $$

we obtain,

$$ -2\mathbb{E}_{t}^{Q^{N}} \biggl( \ln\frac{X_{T}}{X_{t}} \biggr) -2\mathbb {E}_{t}^{Q^{N}} \biggl[ \int_{t}^{T} \biggl( e^{j_{\tau }}-1-j_{\tau}-\frac{1}{2}j_{\tau}^{2} \biggr) dJ_{\tau} \biggr] =\mathbb{E}_{t}^{Q^{N}} \bigl( V_{J} ( t,T ) \bigr) . $$
(A.19)

Next, consider the standard Taylor’s expansion with remainder,

$$ \ln\frac{X_{T}}{X_{t}}=\frac{1}{X_{t}} ( X_{T}-X_{t} ) - \biggl( \int_{0}^{X_{t}}\frac{1}{K^{2}} ( K-X_{T} ) ^{+}dK+\int _{X_{t}}^{\infty} \frac{1}{K^{2}} ( X_{T}-K ) ^{+}dK \biggr) . $$

Taking the expectation under \(Q^{N}\) yields,

$$ \mathbb{E}_{t}^{Q^{N}} \biggl( \ln\frac{X_{T}}{X_{t}} \biggr) =- \frac {1}{N_{t}} \biggl( \int_{0}^{X_{t}} \frac{1}{K^{2}}\mathrm {Put}_{t} ( K ) dK+\int_{X_{t}}^{\infty} \frac{1}{K^{2}}\mathrm {Call}_{t} ( K ) dK \biggr) , $$
(A.20)

where we have made use of the martingale property of \(X_{\tau}\) under \(Q^{N} \), and the expressions for \(\mathrm{Put}_{t} ( K ) \) and \(\mathrm{Call}_{t} ( K ) \) in Definition 2.2. Combining Eq. (A.19) and Eq. (A.20), and using Proposition 2.1, leaves the expression for \(K_{J,Y}\equiv\mathbb{E}_{t}^{Q^{N}} [ V_{J} ( t,T ) ] \) in Eq. (2.44) of the main text.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mele, A., Obayashi, Y. (2015). Variance Contracts: Fixed Income Security Design. In: The Price of Fixed Income Market Volatility. Springer Finance. Springer, Cham. https://doi.org/10.1007/978-3-319-26523-0_2

Download citation

Publish with us

Policies and ethics