Skip to main content

Slowing Down of the Cell Cycle During Fibroblast Proliferation

  • Chapter
  • First Online:
Cellular Ageing and Replicative Senescence

Part of the book series: Healthy Ageing and Longevity ((HAL))

  • 1428 Accesses

Abstract

During serial proliferation, the cell division cycle of normal human fibroblasts slows down due to several modifications in the cycle. It is now accepted that these modifications are associated with the cell ageing that occurs in vivo, which can also be reproduced in vitro. The slow down is due to different cycling characteristics, of each of the four fibroblast types that become progressively apparent during cell replication. Attempts were made to identify an event that could explain it all. However, among the plethora of functional changes that can be observed at the cellular, sub-cellular and molecular levels, none are likely triggers for the slow down of proliferation. There is, however, a basic phenomenon that is associated with the changes of the cell cycle, and can be identified to a great extent with the decreased probability of initiating and transiting the division cycle. It is the evolution of cell volume that is different for each of the four fibroblast types, and concerns the biology of conformation – a subject that has been neglected in the field of cell ageing, and is explained herein.

The author declares that he has no conflict of interests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Absher PM, Absher RG (1976) Clonal variation and aging of diploid fibroblasts: cinematographic studies of cell pedigrees. Exp Cell Res 103:247–255

    Article  CAS  PubMed  Google Scholar 

  • Absher PM, Absher RG, Barnes WD (1974) Genealogies of clones of diploid fibroblasts: cinematographic observations of cell division patterns in relation to population age. Exp Cell Res 88:95–104

    Article  CAS  PubMed  Google Scholar 

  • Allsop RC, Vaziri H, Patterson C, Goldstein S, Younglali EV, Futcher AB, Greider CW, Harley CB (1992) Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci U S A 89:10114–10118

    Article  Google Scholar 

  • Ashley T, Ward DC (1993) A “hot spot” of recombination coincides with an interstitial telomeric sequence in the Armenian hamster. Cytogenet Cell Genet 62:169–176

    Article  CAS  PubMed  Google Scholar 

  • Baker JB, Humphreys T (1971) Serum-stimulated release of cell contacts and the initiation of growth in contact-inhibited chick fibroblasts. Proc Natl Acad Sci U S A 68:2161–2164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ball AJ, Levine F (2005) Telomere-independent cellular senescence in human fetal cardiomyocites. Aging Cell 4:21–22

    Article  CAS  PubMed  Google Scholar 

  • BeMiller PM, Miller JE (1979) Cytological changes in senescing WI-38 cells. A statistical analysis. Mech Ageing Dev 10:1–15

    Article  CAS  PubMed  Google Scholar 

  • Berezney R, Coffey DS (1975) Nuclear protein matrix: association with newly synthesized DNA. Science 189:291–293

    Article  CAS  PubMed  Google Scholar 

  • Bittles AH, Harper N (1984) Increased glycolysis in aging cultured human diploid fibroblasts. Biosci Rep 4:751–756

    Article  CAS  PubMed  Google Scholar 

  • Blackburn EH (2000) Telomere states and cell fates. Nature 408:53–55

    Article  CAS  PubMed  Google Scholar 

  • Blomquist E, Brunk U, Macieira-Coelho A (1993) The influence of cell cooperation, nutrients, and surface area on cell division. Cell Prolif 26:37–43

    Article  CAS  PubMed  Google Scholar 

  • Bond JA, Haughton M, Blaydes J, Gire V, Wynford-Thomas D, Wyllie F (1996) Evidence that transcriptional activation by p53 plays a direct role in the induction of cellular senescence. Oncogene 13:2097–2104

    CAS  PubMed  Google Scholar 

  • Bouvier D, Hubert AP, Bouteille M (1985) Characterization of lamina-bound chromatin in the nuclear shell isolated from HeLa cells. Exp Cell Res 156:500–512

    Article  CAS  PubMed  Google Scholar 

  • Bowman PD, Daniel CW (1975) Aging of human fibroblasts in vitro, surface features and behaviour of aging WI-38 cells. Mech Ageing Dev 4:147–158

    Article  CAS  PubMed  Google Scholar 

  • Brock MA, Hay RJ (1971) Comparative ultrastructure of chick fibroblasts in vitro at early and late stages during their growth span. J Ultrastruct Res 36:291–302

    Article  CAS  PubMed  Google Scholar 

  • Burmer GC, Norwood TH (1980) Selective elimination of proliferating cells in human diploid cell cultures by treatment with BrdU, 33258 Hoechst and visible light. Mech Ageing Dev 12:151–159

    Article  CAS  PubMed  Google Scholar 

  • Collins VP, Arro E, Blomqvist E, Brunk U, Frederikson BA, Westermark (1979) Cell locomotion and proliferation in relation to available surface area, serum concentration and culture age. Scan Electron Microsc 111:411–420

    Google Scholar 

  • Cudkowicz G, Upton AC, Shearer GM (1964) Lymphocyte content and proliferative capacity of serially transplanted mouse bone marrow. Nature 201:165–166

    Article  CAS  PubMed  Google Scholar 

  • Daniel CW, Young LJT (1971) Influence of cell division on an aging process. Life span of mouse mammary epithelium during serial propagation in vivo. Exp Cell Res 65:27–32

    Article  CAS  PubMed  Google Scholar 

  • Dell’Orco RT, Mertens JG, Kruse PF (1974) Doubling potential, calendar time, and donor’s age of human diploid cells in culture. Exp Cell Res 84:363–366

    Article  PubMed  Google Scholar 

  • Dick JE, Wright JA (1985) On the importance of deoxyribonucleotide pools in the senescence of cultured human diploid fibroblasts. FEBS Lett 179:21–24

    Article  CAS  PubMed  Google Scholar 

  • Dimri G, Lee G, Basile M, Acosta M, Scott G, Roskelly C, Medranos E, Linskens M, Rubellj I, Pereira-Smith OM, Peacocke M, Campisi J (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92:9363–9367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans CH, Georgescu HJ (1983) Observation on the senescence of cells derived from articular cartilage. Mech Ageing Dev 22:179–191

    Article  CAS  PubMed  Google Scholar 

  • Evans RJ, Wyllie-Thomas D, Kipling D, Jones CJ (2003) A p53-dependent, telomere-independent proliferative life span barrier in human astrocytes consistent with the molecular genetics of glioma development. Cancer Res 63:4854–4861

    CAS  PubMed  Google Scholar 

  • Fedoroff S, Ahmed I, Wang E (1990) The relationship of expression of statin, the nuclear protein of non-proliferating cells, to the differentiation and cell cycle of astroglia in cultures and in situ. J Neurosci Res 26:1–15

    Article  CAS  PubMed  Google Scholar 

  • Franks LM, Cooper TW (1972) The origin of human embryo lung cells in culture. A comment on cell differentiation, in vitro growth and neoplasia. Int J Cancer 9:19–29

    Article  CAS  PubMed  Google Scholar 

  • Gelfant S, Smith JG (1972) Aging. Noncycling cells, an explanation. Science 277:17–18

    Google Scholar 

  • Gerace L (1985) Structural proteins in the eukaryotic nucleus. Nature 318:508–509

    Article  CAS  PubMed  Google Scholar 

  • Grassilli E, Bellesia D, Fanceschi C (1996) C-fos/c-jun expression and AP-1 activation in skin fibroblasts from centenarians. Biochem Biophys Res Commun 226:517–523

    Article  CAS  PubMed  Google Scholar 

  • Green JH (1977) Terminal differentiation of cultured human epidermal cells. Cell 11:405–416

    Article  CAS  PubMed  Google Scholar 

  • Hards RG, Patterson D (1986) Variation of glycinamide ribonucleotide synthetase levels during in vitro aging of human fibroblasts. Implications for gene dosage studies. Mech Ageing Dev 36:65–70

    Article  CAS  PubMed  Google Scholar 

  • Harley CB (1991) Telomere loss: mitotic clock or genetic time bomb. Mutat Res 256:271–283

    Article  CAS  PubMed  Google Scholar 

  • Harley C, Goldstein S (1980) Retesting the commitment theory of cellular aging. Science 207:191–194

    Article  CAS  PubMed  Google Scholar 

  • Harrison DE, Astle CM, Delaittre JA (1978) Loss of proliferative capacity in immuno-hemopoietic stem cell caused by serial transplantation rather than aging. J Exp Med 147:1526–1531

    Article  CAS  PubMed  Google Scholar 

  • Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid strains. Exp Cell Res 25:583–621

    Article  Google Scholar 

  • Hennis HL, Braid HL, Vincent RA Jr (1981) Unscheduled DNA synthesis in cells of different shape in fibroblast cultures from donors of various ages. Mech Ageing Dev 16:355–361

    Article  CAS  PubMed  Google Scholar 

  • Herbig U, Jobling WA, Chen BP, Chen DJ, Sedivy JM (2004) Telomere shortening triggers senescence of human cells through a patway involving ATM, p53, p21 (CIPI) but not p16 (INK4a). Mol Cell 14:501–513

    Article  CAS  PubMed  Google Scholar 

  • Herskind C, Rodemann HP (2000) Spontaneous and radiation-induced differentiation of fibroblasts. Exp Gerontol 35:747–755

    Article  CAS  PubMed  Google Scholar 

  • Hori Y, Perkins EH, Halsall MK (1973) Decline in phytohemagglutinin responsiveness of spleen cells from aging mice. Proc Soc Exp Biol Med 144:48–53

    Article  CAS  PubMed  Google Scholar 

  • Hornsby PJ, Gill GN (1981) Regulation of glutamine and pyruvate oxidation in cultured adrenocortical cells by cortisol, antioxidants, and oxygen. J Cell Phys 109:111–120

    Article  CAS  Google Scholar 

  • Icard-Liepkalns C, Doly J, Macieira-Coelho A (1986) Gene reorganization during serial divisions of normal human cells. Biochem Bioph Res Commun 141:112–123

    Article  CAS  Google Scholar 

  • Ivanov VI, Minchenkova LE, Schyolkina AK, Poletayev AI (1973) Different conformation of double-stranded nucleic acid in solutin as revealed by circular dichroism. Biopolymers 12:89–110

    Article  CAS  PubMed  Google Scholar 

  • Jackson DA, McCready SJ, Cook PR (1984) Replication and transcription depend on attachment of DNA to the nuclear cage. J Cell Sci Suppl 1:59–79

    Article  CAS  PubMed  Google Scholar 

  • Kahn A, Meienhofer MC, Guillouzou A, Cottreau D, Baffet G, Henry J, Dreyfus JC (1982) Modifications of phosphoproteins and protein kinases occurring with in vitro aging of cultured human cells. Gerontology 28:360–370

    Article  CAS  PubMed  Google Scholar 

  • Kaji K, Matsuo M (1983) Responsiveness of human lung diploid fibroblasts ageing in vitro to epidermal growth factor: saturation densities and life span. Mech Ageing Dev 22:129–133

    Article  CAS  PubMed  Google Scholar 

  • Kang MK, Guo W, Park NH (1998) Replicative senescence of normal human oral keratinocytes is associated with the loss of telomerase activity without shortening of telomeres. Cell Growth Differ 9:85–95

    CAS  PubMed  Google Scholar 

  • Kapp LN, Klevecz RR (1976) The cell cycle of low passage and high passage human diploid fibroblasts. Exp Cell Res 101:154–158

    Article  CAS  PubMed  Google Scholar 

  • Macieira-Coelho A (1967) Influence of cell density on growth inhibition of human fibroblasts in vitro. Proc Soc Exp Biol Med 125:548–552

    Article  CAS  PubMed  Google Scholar 

  • Macieira-Coelho A (1973) Aging and cell division. Front Matrix Biol 1:46–77

    CAS  Google Scholar 

  • Macieira-Coelho A (1974) Are non-dividing cells present in ageing cell cultures? Nature 248:421–422

    Article  CAS  PubMed  Google Scholar 

  • Macieira-Coelho A (1983) Changes in membrane properties associated with cellular aging. Int Rev Cyt 83:183–198

    Article  CAS  Google Scholar 

  • Macieira-Coelho A (1988) Biology of normal proliferating cells in vitro. In: von Hahn HP (ed) . Relevance for in vivo aging, vol 23, Interdisciplinary topics in gerontology. Karger, Basel

    Google Scholar 

  • Macieira-Coelho A (1990) Reorganization in the different hierarchical structures of DNA during cell senescence. In: Finch CE, Johnson TE (eds) Molecular biology of aging. Alan R. Liss, New York, pp 351–364

    Google Scholar 

  • Macieira-Coelho A (1991) Chromatin reorganization during senescence of proliferating cells. Mutat Res 256:81–104

    Article  CAS  PubMed  Google Scholar 

  • Macieira-Coelho A (1995) The last mitoses of the human fibroblast proliferative life span, physiopathologic implications. Mech Ageing Dev 82:91–104

    Article  CAS  PubMed  Google Scholar 

  • Macieira-Coelho A (1995) Chaos in DNA partition during the last mitoses of the proliferative life-span of human fibroblasts. FEBS Lett 358:126–128

    Article  CAS  PubMed  Google Scholar 

  • Macieira-Coelho A (2003) Biology of aging, progress in molecular and subcellular biology, vol 30. Springer, Heidelberg, pp 1–192

    Google Scholar 

  • Macieira-Coelho A (2007) Asymmetric distribution of DNA between daughter cells with final symmetry breaking during aging of human fibroblasts. In: Macieira-Coelho A (ed) Asymmetric cell division, progress in molecular and subcellular biology, vol 45. Springer, Berlin/Heidelberg, pp 227–242

    Google Scholar 

  • Macieira-Coelho A (2011) Cell division and aging of the organism. Biogerontology 12:503–515

    Article  PubMed  Google Scholar 

  • Macieira-Coelho A, Azzarone B (1982) Aging of human fibroblasts is a succession of subtle changes in the cell cycle and has a final short stage with abrupt events. Exp Cell Res 141:325–332

    Article  CAS  PubMed  Google Scholar 

  • Macieira-Coelho A, Azzarone B (1990) Correlation between contractility and proliferation in human fibroblasts. J Cell Phys 142:610–614

    Article  CAS  Google Scholar 

  • Macieira-Coelho A, Berumen L (1973) The cell cycle during growth inhibition of human embryonic fibroblasts in vitro. Proc Soc Exp Biol Med 144:43–48

    Article  CAS  PubMed  Google Scholar 

  • Macieira-Coelho A, Lima L (1973) Aging in vitro. Incorporation of RNA and protein precursors and acid phosphatase activity during the lifespan of chick embryo fibroblasts. Mech Ageing Dev 2:13–18

    Article  CAS  PubMed  Google Scholar 

  • Macieira-Coelho A, Pontén J (1969) Analogy in growth between late passage human embryonic and early passage human adult fibroblasts. J Cell Biol 43:374–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macieira-Coelho A, Pontén J, Philipson L (1966a) The division cycle and RNA-synthesis in diploid human cells at different passage levels in vitro. Exp Cell Res 42:673–684

    Article  CAS  PubMed  Google Scholar 

  • Macieira-Coelho A, Pontén J, Philipson L (1966b) Inhibition of the division cycle in confluent cultures of human fibroblasts in vitro. Exp Cell Res 43:20–29

    Article  CAS  PubMed  Google Scholar 

  • Macieira-Coelho A, Garcia-Giralt E, Adrian M (1971) Changes in lysosomal enzymes associated structures in human fibroblasts kept in resting stage. Proc Soc Exp Biol Med 138:712–718

    Article  Google Scholar 

  • Macieira-Coelho A, Berumen L, Avrameas S (1974) Properties of protein polymers as substratum for cell growth in vitro. J Cell Phys 83:379–388

    Article  CAS  Google Scholar 

  • Macieira-Coelho A, Bengtson A, Van der Ploeg M (1982) Distribution of DNA between sister cells during serial subcultivation of human fibroblasts. Histochemistry 75:11–24

    Article  CAS  PubMed  Google Scholar 

  • Martin GM, Sprague CA, Norwood TH, Pendergrass WR (1974) Clonal selection, attenuation, and differentiation in an in vitro model of hyperplasia. Am J Path 74:137–154

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumura T, Pfendt EA, Hayflick L (1979a) DNA synthesis in the human diploid cell strain WI-38 during in vitro aging. An autoradiographic study. J Gerontol 34:323–328

    Article  CAS  PubMed  Google Scholar 

  • Matsumura T, Zerrudo Z, Hayflick L (1979b) Senescent human diploid cells in culture: survival, DNA synthesis and morphology. J Gerontol 34:328–332

    Article  CAS  PubMed  Google Scholar 

  • Meltzer PS, Guan XY, Trent JM (1993) Telomere capture stabilizes chromosome breakage. Nat Genet 4:252–255

    Article  CAS  PubMed  Google Scholar 

  • Mendez MV, Stanley A, Phillips T, Murphy M, Menzoian JO, Park HY (1998) Fibroblasts cultured from venous ulcers display cellular characteristics of senescence. J Vasc Surg 28:876–883

    Article  CAS  PubMed  Google Scholar 

  • Miller RC, Nichols WW, Pottash J, Aaronson MM (1977) Cytogenetic comparison of diploid human fibroblasts and epithelioid cell lines. Exp Cell Res 110:63–69

    Article  CAS  PubMed  Google Scholar 

  • Mitsui Y, Schneider EL (1976a) Characterization of fractionated human diploid fibroblast populations. Exp Cell Res 103:23–30

    Article  CAS  PubMed  Google Scholar 

  • Mitsui Y, Schneider EL (1976b) Relationship between cell replication and volume in senescent human diploid fibroblasts. Mech Ageing Dev 5:45–56

    Article  CAS  PubMed  Google Scholar 

  • Morocutti A, Earle KA, Sethi M, Piras G, Richards D, Rodemann P, Viberti G (1996) Premature senescence of skin fibroblasts from insulin-dependent diabetic patients with kidney disease. Kidney Int 50:250–256

    Article  CAS  PubMed  Google Scholar 

  • Muggleton-Harris AL, Defuria R (1985) Age-dependent metabolic changes in cultured human fibroblasts. In Vitro Cell Dev Biol 21:271–276

    Article  CAS  PubMed  Google Scholar 

  • Park WY, Hwang CI, Kang MJ, Seo JY, Chung JH, Kim YS, Lee JH, Kim H, Yoo HJ, Seo JS (2001) Gene profile of replicative senescence is different from progeria or elderly donor. Exp Cell Res 282:934–939

    CAS  Google Scholar 

  • Paz MA, Torrelio M, Gallop PM (1981) X-linked processes in serially passaged aging human diploid cells. J Gerontol 36:142–151

    Article  CAS  PubMed  Google Scholar 

  • Pereira-Smith OM, Smith JR (1981) Expression of SV40 antigen in finite life-span hybrids of normal and SV40 transformed fibroblasts. Somat Cell Genet 7:411–421

    Article  CAS  PubMed  Google Scholar 

  • Pignolo RJ, Cristofalo VJ, Rotenberg MO (1993) Senescent WI-38 cells fail to express EPC-1, a gene induced in young cells upon entry into the Go state. J Biol Chem 268:8949–8957

    CAS  PubMed  Google Scholar 

  • Pontén J, Stein WD, Shall S (1983) A quantitative analysis of the aging of human glial cells in culture. J Cell Phys 117:342–352

    Article  Google Scholar 

  • Price GB, Makinodan T (1972) Immunologic deficiencies in senescence. I. Characterization of intrinsic deficiencies. J Immun 108:413–417

    CAS  PubMed  Google Scholar 

  • Puck TT (1977) Cyclic AMP, the microtubule-microfilament system, and cancer. Proc Natl Acad Sci U S A 74:4491–4495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puvion-Dutilleul F, Macieira-Coelho A (1983) Aging-dependent nucleolar and chromatin changes in cultivated fibroblasts. Cell Biol Int Rep 7:61–66

    Article  CAS  PubMed  Google Scholar 

  • Puvion-Dutilleul F, Sarrasin A (1989) Chromatin and nucleolar changes in Xeroderma pigmentosum cells resemble aging-related events. Mutat Res 219:57–70

    Article  CAS  PubMed  Google Scholar 

  • Raes M, Genens G, Brabander M, Remacle J (1983) Microtubules and microfilaments in ageing hamster embryo fibroblasts in vitro. Exp Gerontol 18:241–254

    Article  CAS  PubMed  Google Scholar 

  • Rheinwald JG, Green JH (1977) Epidermal growth factor and the multiplication of cultured human epidermal keratinocytes. Nature 265:421–424

    Article  CAS  PubMed  Google Scholar 

  • Rheinwald JG, Hahn WC, Ramsey MR, Wu JY, Guo Z, Tsao H, de Luca M, Catricalà C, O’Toole M (2002) A two-stage, p16INK4A and p53-dependent keratinocyte senescence mechanism that limits replicative potential independent of telomere status. Mol Cell Biol 22:5157–5172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosen EM, Mueller SN, Noveral JP, Levine EH (1981) Proliferative characteristics of clonal endothelial cell strains. J Cell Phys 137:107–123

    Google Scholar 

  • Ruiz-Torres A, Gimeno A, Melon J, Mendez L, Munoz FJ, Macia M (1999) Age-related loss of proliferative activity of human vascular smooth muscle cells in culture. Mech Ageing Dev 110:49–55

    Article  CAS  PubMed  Google Scholar 

  • Russell J, Witt W (1976) Cell size and growth characteristics of cultured fibroblasts isolated from normal and keloid tissue. Plast Reconstr Surg 57:207–212

    Article  CAS  PubMed  Google Scholar 

  • Rutka JT, Kleppe-Hoifodt H, Emma DA, Giblin JR, Dougherty DV, McCulloch JR, DeArmond SJ, Rosenblum ML (1986) Characterization of normal human brain cultures. Evidence for the outgrowth of leptomeningeal cells. Lab Invest 55:71–85

    CAS  PubMed  Google Scholar 

  • Ryan JM (1979) The kinetics of chick cell populations aging in vitro. J Cell Phys 99:67–78

    Article  CAS  Google Scholar 

  • Sasaki M, Kumazaki T, Takano H, Nishiyama M, Mitsui Y (2001) Senescent cells are resistant to death despite low Bcl-2 level. Mech Ageing Dev 15:1695–1700

    Article  Google Scholar 

  • Schneider EL, Fowlkes BJ (1976) Measurement of DNA content and cell volume in senescent human fibroblasts utilizing flow multiparameter single cell analysis. Exp Cell Res 98:298–302

    Article  CAS  PubMed  Google Scholar 

  • Schofield R, Dexter TM, Lord BJ, Testz NG (1986) Comparison of haemopoiesis in young and old mice. Mech Ageing Dev 34:1–12

    Article  CAS  PubMed  Google Scholar 

  • Shevitz J, Jenkins CSP, Hatcher VB (1986) Fibronectin synthesis and degradation in human fibroblasts with aging. Mech Ageing Dev 35:221–232

    Article  CAS  PubMed  Google Scholar 

  • Siminovitch L, Till JE, McCulloch EA (1964) Decline in colony-forming ability of marrow cells subjected to serial transplantation into irradiated mice. J Cell Comp Physiol 64:23–29

    Article  CAS  Google Scholar 

  • Simon M, Green H (1984) Participation of membrane-associated proteins in the formation of the cross-linked envelope of the keratinocyte. Cell 36:827–834

    Article  CAS  PubMed  Google Scholar 

  • Simonneau L, Hervé B, Jacquemin E, Courtois Y (1983) State of differentiation of bovine epithelial lens cells in vitro. Exp Cell Res 145:433–446

    Article  CAS  PubMed  Google Scholar 

  • Simons JW, van den Broek C (1970) Comparison of ageing in vitro and ageing in vivo by means of cell size analysis using a Coulter counter. Gerontologia 16:340–351

    Article  CAS  PubMed  Google Scholar 

  • Sisken JE, Bonner SV (1979) On the duration of mitotic stages in senescing human fibroblasts in culture. Mech Ageing Dev 11:191–196

    Article  CAS  PubMed  Google Scholar 

  • Smith JR, Whitney RG (1980) Intraclonal variation in proliferation potential of human diploid fibroblasts. Science 207:82–84

    Article  CAS  PubMed  Google Scholar 

  • Soukupova M, Holeckova E (1964) The latent period of explanted organs of newborn, adult and senile rats. Exp Cell Res 33:361–367

    Article  CAS  PubMed  Google Scholar 

  • Steinhardt M (1985) Effect of donor age on clonal differentiation of human skin fibroblasts in vitro. Gerontology 31:27–38

    Article  CAS  PubMed  Google Scholar 

  • Takubo K, Izumyiama-Shimomura M, Homa N, Sawabe M, Arai T, Kato M, Nakamura K-I (2002) Telomere lengths are characteristic in each human individual. Exp Gerontol 37:523–531

    Article  CAS  PubMed  Google Scholar 

  • Tresini M, Pignolo RJ, Allen RG, Cristofalo VJ (1999) Effects of donor age on the expression of a marker of replicative senescence (EPC-1) in human dermal fibroblasts. J Cell Phys 179:11–17

    Article  CAS  Google Scholar 

  • Unryn BM, Cook LS, Riabowoll KT (2005) Paternal age is positively linked to telomere length of children. Aging Cell 97:99

    Google Scholar 

  • Uziel O, Singer JA, Danicek V, Sahar G, Berkov E, Luchansky M, Fraser A, Ram R, Lahav M (2007) Telomere dynamics in arteries and mononuclear cells of diabetic patients. Exp Gerontol 42:971–978

    Article  CAS  PubMed  Google Scholar 

  • Van’T Hof J, Bjerknes CA (1982) Cells of pea (pisum sativum) that differentiate from G2 phase have extra-chromosomal DNA. Mol Cell Biol 2:339–345

    Article  Google Scholar 

  • Vincent RA Jr, Huang PC (1976) The proportion of cells labeled with tritiated thymidine as a function of population doubling level in cultures of fetal, adult, mutant and tumor origin. Exp Cell Res 102:31–42

    Article  PubMed  Google Scholar 

  • Vos O, Dolmans MJAS (1972) Self-renewal of colony forming units (CFU) in serial bone marrow transplantation experiments. Cell Tissue Kinet 5:371–385

    CAS  PubMed  Google Scholar 

  • Wiemann SU, Satyanarayana A, Tsahuridu M, Tillmann HL, Zender L, Klempnauer J, Flemmin P, Franco S, Blasco MA, Manns MP, Rudolph KKL (2002) Hepatocytentelomere shortening and senescence are general markers of human liver cirrhosis. FASEB J 16:935–942

    Article  CAS  PubMed  Google Scholar 

  • Williamson AR, Askonas BA (1972) Senescence of an antibody-forming cell clone. Nature 238:337–339

    Article  CAS  PubMed  Google Scholar 

  • Yamagishi H, Kunisadaa T, Iwakura Y, Nishimuno Y, Ogiso Y, Matsuhiro (1983) Emergence of extrachromosomal circular DNA complexes as one of the earliest signals of cellular differentiation in the early development of mouse embryos. Dev Growth Differ 25:563–569

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvaro Macieira-Coelho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Macieira-Coelho, A. (2016). Slowing Down of the Cell Cycle During Fibroblast Proliferation. In: Rattan, S., Hayflick, L. (eds) Cellular Ageing and Replicative Senescence. Healthy Ageing and Longevity. Springer, Cham. https://doi.org/10.1007/978-3-319-26239-0_3

Download citation

Publish with us

Policies and ethics