Skip to main content

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

Recent advances in sensing technologies are leading to the development of miniaturised sensors that could be used as stand-alone devices, connected to smartphones or even embedded in smartphones. These sensors and apps create opportunities for more detailed environmental monitoring, as compared to official monitoring networks, and to involve the general public in environmental monitoring through participatory data collection and monitoring schemes. However, depending on the aspects of the environment that are monitored, technical complexity can differ quite a lot. Proper monitoring often requires important efforts in developing and validating sensing devices and in processing the collected data. This chapter deals with low-cost sensing devices and smartphone applications for physico-chemical environmental parameters, that can be used, possibly with some training, by non-specialised people, and as such create new opportunities for collection of novel data and improved monitoring of the environment. It starts with examples of novel sensing devices and apps for different environmental domains, and proceeds with a detailed overview of the possible added value, the technical challenges and future prospects in two specific domains that recently received a lot of interest, air quality and sound monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term environment is used here in the narrow sense of the biophysical environment in which organisms live, that affects their health and wellbeing, and that in its turn is affected by their activities. Sensing the environment then means assessing the state of the environment in which organisms live, in domains such as air, water, noise, radiation, ecology or biodiversity.

  2. 2.

    Changes in ambient pressure of a medium (typically air), propagating away for the source of the sound.

  3. 3.

    Loudness level, denoted as L N , is a more accurate way to quantify the perceived loudness of sounds, taking into account not only amplitude and frequency but also masking and duration of exposure.

  4. 4.

    Complex sounds are sounds composed of multiple frequencies, as opposed to single-frequency pure tones. Virtually all sounds we hear in our daily lives are complex.

  5. 5.

    MicroElectrical-Mechanical System

  6. 6.

    The calibration in NoiseTube is done by applying a level-dependent correction factor to each measurement. Details on the calibration process can be found in (Stevens 2012) and (D’Hondt et al. 2013).

References

  • Afzal, A., Cioffi, N., Sabbatini, L., Torsi, L.: NOx sensors based on semiconducting metal oxide nanostructures: progress and perspectives. Sensors Actuators B Chem. 171–172, 25–42 (2012). doi:10.1016/j.snb.2012.05.026

    Article  Google Scholar 

  • Alphasense: http://www.alphasense.com/index.php/products/nitrogen-dioxide-2/ (2015). Accessed 16 June 2015

  • Basu, S., Bhattacharyya, P.: Recent developments on graphene and graphene oxide based solid state gas sensors. Sensors Actuators B Chem. 173, 1–21 (2012). doi:10.1016/j.snb.2012.07.092

    Article  Google Scholar 

  • Becker, M., Caminiti, S., Fiorella, D., Francis, L., Gravino, P., et al.: Awareness and learning in participatory noise sensing. PLoS One 8(12), e81638 (2013)

    Article  ADS  Google Scholar 

  • Boes, M., Oldoni, D., De Coensel, B., Botteldooren, D.: A biologically inspired recurrent neural network for sound source recognition incorporating auditory attention. In: 2013 International Joint Conference on Neural Networks (IJCNN). IEEE Catalogue Number: CFP13IJS-ART ISBN: 978-1-4673-6129-3, Dallas, 4–9 August 2013. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6691896

  • Brunet, J., Garcia, V.P., Pauly, A., et al.: An optimised gas sensor microsystem for accurate and real-time measurement of nitrogen dioxide at ppb level. Sensors Actuators B Chem. 134, 632–639 (2008). doi:10.1016/j.snb.2008.06.010

  • Budde, M., El Masri, R., Riedel, T., Beigl, M.: Enabling low-cost particulate matter measurement for participatory sensing scenarios. In: Proceedings of the 12th International Conference on mobile ubiquitous multimedia (MUM 2013), Lulea (2013)

    Google Scholar 

  • Buonocore, J.J., Lee, H.J., Levy, J.I.: The influence of traffic on air quality in an urban neighborhood: a community-university partnership. Am. J. Public Health 99(S3), S629–S635 (2009)

    Article  Google Scholar 

  • Bur, C., Bastuck, M., Lloyd Spetz, A., et al.: Selectivity enhancement of SiC-FET gas sensors by combining temperature and gate bias cycled operation using multivariate statistics. Sensors Actuators B Chem. 193, 931–940 (2014). doi:10.1016/j.snb.2013.12.030

    Article  Google Scholar 

  • Burke, J.A., et al.: Participatory sensing. WSW’06: Workshop on World-Sensor-Web, held at ACM SenSys’06, Boulder, 31 October 2006 to 3 November 2006 (2006)

    Google Scholar 

  • Choi, S., Kim, N., Cha, H., Ha, R.: Micro sensor node for air pollutant monitoring: hardware and software issues. Sensors 9, 7970–7987 (2009)

    Article  Google Scholar 

  • D’Hondt, E., Stevens, M., Jacobs, A.: Participatory noise mapping works! An evaluation of participatory sensing as an alternative to standard techniques for environmental monitoring. Pervasive Mob. Comput 9(5), 681–694 (2013)

    Article  Google Scholar 

  • De Vito, S., Piga, M., Martinotto, L., Di Francia, G.: CO, NO2 and NOx urban pollution monitoring with on-field calibrated electronic nose by automatic bayesian regularization. Sensors Actuators B Chem. 143, 182–191 (2009)

    Article  Google Scholar 

  • Delgado-Saborit, J.M.: Use of real-time sensors to characterise human exposures to combustion related pollutants. J. Environ. Monit. 14(7), 1824–1837 (2012)

    Article  Google Scholar 

  • Dons, E., Int Panis, L., Van Poppel, M., Theunis, J., Willems, H., Torfs, R., Wets, G.: Impact of time-activity patterns on personal exposure to black carbon. Atmos. Environ. 45(21), 3594–3602 (2011)

    Article  ADS  Google Scholar 

  • Dons, E., Int Panis, L., Van Poppel, M., et al.: Personal exposure to black carbon in transport microenvironments. Atmos. Environ. 55, 392–398 (2012)

    Article  ADS  Google Scholar 

  • Dutta, P., Aoki, P., Kumar, A., Mainwaring, A., Myers, C., Willet, W., Woodruff, A.: Common sense: participatory urban sensing using a network of handheld air quality monitors. In: Proceedings of the 7th International Conference on Embedded Networked Sensor Systems, SenSys 2009, Berkeley, 4–6 November 2009. ACM 2009, ISBN 978-1-60558-519-2

    Google Scholar 

  • European Commission: Report from the Commission to the European Parliament and the Council on the implementation of the Environmental Noise Directive in accordance with Article 11 of Directive 2002/49/EC. Report COM(2011) 321 final (2011)

    Google Scholar 

  • European Environment Agency: Air quality in Europe — 2013 report. Copenhagen (2013)

    Google Scholar 

  • European Parliament and Council: Directive 2002/49/EC of 25 June 2002 relating to the assessment and management of environmental noise. Off. J. Eur. Communities L 189(45), 12–26 (2002)

    Google Scholar 

  • Gerboles, M., Buzica, D.: Evaluation of micro-sensors to monitor ozone in ambient air. Ispra (2009)

    Google Scholar 

  • Hasenfratz, D., Saukh, O., Sturzenegger, S., Thiele, L.: Participatory air pollution monitoring using smartphones. In: 2nd International Workshop on Mobile Sensing, Beijing, 16–20 April 2012

    Google Scholar 

  • Holstius, D.M., Pillarisetti, A., Smith, K.R., Seto, E.: Field calibrations of a low-cost aerosol sensor at a regulatory monitoring site in California. Atmos. Meas. Tech. Discuss. 7, 605–632 (2014)

    Article  Google Scholar 

  • International Electrotechnical Commission: Electroacoustics – sound level meters – part 1: specifications (ed2.0). IEC 61672–1:2013 (2013a)

    Google Scholar 

  • International Electrotechnical Commission: Electroacoustics – sound level meters – part 2: pattern evaluation tests (ed2.0). IEC 61672–2:2013 (2013b)

    Google Scholar 

  • International Electrotechnical Commission: Electroacoustics – sound level meters – part 3: periodic tests (ed2.0). IEC 61672–3:2013 (2013c)

    Google Scholar 

  • International Organization for Standardization: Acoustics – method for calculating loudness level. ISO 532:1975 (1975)

    Google Scholar 

  • Ishigaki, Y., Matsumoto, Y., Ichimiya, R., Tanaka, K.: Ultra-low-cost radiation monitoring system utilizing smartphone-connected sensors developed with internet community. In: IEEE Sensors, 2012. IEEE Catalogue Number: CFP12SEN-USB ISBN: 978-1-4577-1765-9, Taipei, 28–31 October 2012. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6381733

  • Janssen, N.A.H., Gerlofs-Nijland, M.E., Lanki, T., et al.: Health Effects of Black Carbon. WHO Regional Office for Europe, Copenhagen (2013)

    Google Scholar 

  • Kaplan, R., Kaplan, S.: The Experience of Nature: A Psychological Perspective. Cambridge University Press, Cambridge (1989). ISBN 0-521-34139-6

    Google Scholar 

  • Lam, K.C., Brown, A.L., Marafa, L., Chau, K.-C.: Human preference for countryside soundscapes. Acta Acust United Ac. 96(3), 463–471 (2010)

    Article  Google Scholar 

  • Lercher, P.: In: Kephalopoulos, S. (organiser), Schwela, D., Koistinen, K., Paviotti, M., Kotzias, D. (eds.) Proceedings of the International Workshop on “Combined Environmental Exposure: Noise, Air Pollution, Chemicals” organised by the JRC/IHC/PCE on 15–16 January 2007, Ispra. Office for Official Publications of the European Communities, Luxembourg (2007). EUR 22883 EN, ISBN: 978-92-79-06542-2, ISSN: 1018-5593

    Google Scholar 

  • Llobet, E.: Gas sensors using carbon nanomaterials: a review. Sensors Actuators B Chem. 179, 32–45 (2013). doi:10.1016/j.snb.2012.11.014

    Article  Google Scholar 

  • Maisonneuve, N., Stevens, M., Ochab, B.: Participatory noise pollution monitoring using mobile phones. Inf. Polity 15(1–2), 51–71 (2010)

    Google Scholar 

  • Mead, M.I., Popoola, O.A.M., Stewart, G.B., et al.: The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks. Atmos. Environ. 70, 186–203 (2013). doi:10.1016/j.atmosenv.2012.11.060

    Article  ADS  Google Scholar 

  • Mills, J.B., Park, J.H., Peters, T.M.: Comparison of the DiSCmini aerosol monitor to a handheld condensation particle counter and a scanning mobility particle sizer for submicrometer sodium chloride and metal aerosols. J. Occup. Environ. Hyg. 10, 250–258 (2013)

    Article  Google Scholar 

  • Milton, R., Steed, A.: Mapping carbon monoxide using GPS tracked sensors. Environ. Monit. Assess. 124, 1–19 (2007)

    Article  Google Scholar 

  • Oldoni, D., De Coensel, B., Boes, M., Rademaker, M., De Baets, B., Van Renterghem, T., Botteldooren, D.: A computational model of auditory attention for use in soundscape research. J. Acoust. Soc. Am. 134(1), 852–861 (2013)

    Article  ADS  Google Scholar 

  • Paprotny, I., Doering, F., Solomon, P.A., et al.: Microfabricated air-microfluidic sensor for personal monitoring of airborne particulate matter: design, fabrication, and experimental results. Sensors Actuators A Phys. 201, 506–516 (2013)

    Article  Google Scholar 

  • Peters, J., Theunis, J., Van Poppel, M., Berghmans, P.: Monitoring PM10 and ultrafine particles in urban environments using mobile measurements. Aerosol Air Qual. Res. 13, 509–522 (2013)

    Google Scholar 

  • Piedrahita, R., Xiang, J., Masson, N., Ortega, J., Collier, A., Jiang, Y.: The next generation of low-cost personal air quality sensors for quantitative exposure monitoring. Atmos. Meas. Tech. 7(10), 3325–3336 (2014)

    Article  Google Scholar 

  • Roche, N., Langton, S., Aughney, T., Russ, J.M., Marnell, F., Lynn, D., Catto, C.: A car-based monitoring method reveals new information on bat populations and distributions in Ireland. Anim. Conserv. 14(6), 642–651 (2011)

    Article  Google Scholar 

  • Roy, H.E., Pocock, M.J.O., Preston, C.D., Savage, J., Tweddle, J.C., Robinson, L.D.: Understanding citizen science and environmental monitoring (Vol. Final Report). NERC Centre for Ecology & Hydrology and Natural History Museum. Retrieved from http://www.ukeof.org.uk/documents/understanding-citizen-science.pdf (2012)

  • Schweizer, I., Meurisch, C., Gedeon, J., et al.: Noisemap: multi-tier incentive mechanisms for participative urban sensing. In: Proceedings of the Third International Workshop on Sensing Applications on Mobile Phones, pp. 9:1–9:5. ACM, New York (2012)

    Google Scholar 

  • Science Communication Unit - University of the West of England - Bristol: Science for environment policy in-depth report: environmental citizen science (2013)

    Google Scholar 

  • Steinle, S., Reis, S.C.E., Semple, S., Twigg, M.M., Braban, C.F., Leeson, S.R., Heal, M.R., Harrison, D., Lin, C., Wu, H.: Personal exposure monitoring of PM2.5 in indoor and outdoor microenvironments. Sci. Total Environ. 508, 383–394 (2015)

    Article  Google Scholar 

  • Stevens, M.: Community memories for sustainable societies: the case of environmental noise. Ph.D. thesis, Vrije Universiteit Brussel. VUBPress/ASP Editions. http://brussense.be/phd-matthias (2012)

  • Thomas, S., Villa-Lopez, F., Theunis, J., et al.: Particle system using solidly mounted resonators. IEEE Sens. J. 16, 2282–2289 (2016). doi:10.1109/JSEN.2015.2512303

    Article  Google Scholar 

  • U.S. Environmental Protection Agency: Our nation’s air - status and trends through 2010 (2012)

    Google Scholar 

  • Van Renterghem, T., Thomas, P., Dominguez, F., Dauwe, S., Touhafi, A., Dhoedt, B., Botteldooren, D.: On the ability of consumer electronics microphones for environmental noise monitoring. J. Environ. Monit. 13(3), 544–552 (2011)

    Article  Google Scholar 

  • Wallace, L.A., Wheeler, A.J., Kearney, J., et al.: Validation of continuous particle monitors for personal, indoor, and outdoor exposures. J. Expo. Sci. Environ. Epidemiol. 21, 49–64 (2011). doi:10.1038/jes.2010.15

    Article  Google Scholar 

  • WHO Regional Office for Europe/European Commission Joint Research Centre: Burden of disease from environmental noise. Quantification of healthy life years lost in Europe (2011). ISBN: 978-92-890-0229-5

    Google Scholar 

  • WHO Regional Office for Europe: Review of evidence on health aspects of air pollution – REVIHAAP Project. Copenhagen (2013)

    Google Scholar 

  • WHO: Burden of disease from ambient air pollution for 2012. http://www.who.int/phe/health_topics/outdoorair/databases/AAP_BoD_results_March2014.pdf?ua=1 (2014)

  • Williams, D.E., Salmond, J., Yung, Y.F., et al.: Development of low-cost ozone and nitrogen dioxide measurement instruments suitable for use in an air quality monitoring network. In: 8th Annual IEEE Conference on Sensors (2009)

    Google Scholar 

  • Zappi, P., Bales, E., Park, J.-H., Griswold, W., Rosing, T.: Mobile sensing: from smartphones and wearables to big data. In: 2nd International Workshop on Mobile Sensing. Workshop co-located with IPSN’12 and CPSWEEK, IPSN 2012, Beijing, 16 April 2012. In: 11th ACM/IEEE Conference on Information Processing in Sensor Networks, Beijing, 16–19 April 2012. http://research.microsoft.com/en-us/um/beijing/events/ms_ipsn12/papers/msipsn-park.pdf

  • Zilli, D., Parson, O., Merrett, G.V., Rogers, A.: A hidden Markov model-based acoustic cicada detector for crowdsourced smartphone biodiversity monitoring. In: 23rd International Joint Conference on Artificial Intelligence, pp. 2945–2951. Beijing (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Theunis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Theunis, J., Stevens, M., Botteldooren, D. (2017). Sensing the Environment. In: Loreto, V., et al. Participatory Sensing, Opinions and Collective Awareness. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-25658-0_2

Download citation

Publish with us

Policies and ethics