Skip to main content

Bioproduction of Fungal Cellulases and Hemicellulases Through Solid State Fermentation

  • Reference work entry
  • First Online:
Fungal Metabolites

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Fungi produce extensive set of enzymes to degrade lignocellulosic plant biomass. Fungal (hemi)cellulases are among the most widely exploited microbial enzymes for many industrial and environmental applications. However, in biofuel industries and few other sectors, the cost of the enzymes is a big hurdle in the development of successful technology. So far industrial production of (hemi)cellulases is mainly achieved by submerged fermentation technique. But solid state fermentation (SSF) is an alternative low-cost and less energy-intensive technology which can lead to reduction in the cost of these enzymes. The chapter initially describes structure and occurrence of plant cellulose and hemicellulose and their degradation by fungal enzymes. Extracellular multienzyme systems of wood-rotting fungi, plant-pathogenic fungi, and thermophilic fungi are also reviewed. Production of (hemi)cellulases by SSF is explained with discussion on critical factors affecting the process and their optimization. Additionally, attempts to develop large-scale SSF processes using bioreactors are also described. Improvements of fungal (hemi)cellulases by genetic approaches and the current applications of (hemi)cellulases along with bioconversions of lignocellulosic waste into valuable products for use as energy source or food additives are briefly narrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

aw :

Water activity

BBD:

Box-Behnken design

CBH:

Cellobiohydrolase

CBM:

Carbohydrate-binding module

CCD:

Central composite design

CCFD:

Central composite face-centered design

CFC:

Cellophane film culture

CMCase:

Carboxymethyl cellulase

g:

Gram

GH:

Glycosyl hydrolase

LCM:

Lignocellulosic Material

LPMO:

Lytic polysaccharide monooxygenases

PBD:

Plackett-Burman design

SmF:

Submerged fermentation

SSF:

Solid state fermentation

U/g:

Unit per gram of substrate

References

  1. Zhang YHP, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24(5):452–481

    Article  CAS  Google Scholar 

  2. Zhu Z, Sathitsuksanoh N, Zhang Y-HP (2009) Direct quantitative determination of adsorbed cellulase on lignocellulosic biomass with its application to study cellulase desorption for potential recycling. Analyst 134:2267–2272

    Article  CAS  Google Scholar 

  3. Eriksson K-EL, Bermek H (2009) Lignin, lignocellulose, ligninase. In encyclopedia of microbiology, 3rd edition, M. Schaichter (ed). Elsevier, USA Appl Microbiol Ind 373–384

    Google Scholar 

  4. Lee J (1997) Biological conversion of lignocellulosic biomass to ethanol. J Biotechnol 56:1–24

    Article  CAS  Google Scholar 

  5. Howard RL, Abotsi E, Jansen van Rensburg EL, Howard S (2003) Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr J Biotechnol 2(12):602–619

    Article  CAS  Google Scholar 

  6. Bridgeman TG, Jones JM, Shield I, Williams PT (2008) Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel 87:844–856

    Article  CAS  Google Scholar 

  7. Merino ST, Cherry J (2007) Progress and challenges in enzyme development for biomass utilization. Adv Biochem Eng Biotechnol 108:95–120

    CAS  Google Scholar 

  8. Okeke BC, Obi SK (1994) Lignocellulose and sugar compositions of some agro-wastes. Bioresour Technol 47:283–284

    Article  CAS  Google Scholar 

  9. Dijkerman R, Bhansing DC, Op den Camp HJ, van der Drift C, Vogels GD (1997) Degradation of structural polysaccharides by the plant cell-wall degrading enzyme system from anaerobic fungi: and application study. Enzyme Microb Technol 21:130–136

    Article  CAS  Google Scholar 

  10. Delmer DP, Amor Y (1995) Cellulose biosynthesis. Plant Cell 7:987–1000

    Article  CAS  Google Scholar 

  11. Morohoshi N (1991) Chemical characterization of wood and its components. In: Hon DNS, Shriraishi N (eds) Wood and cellulosic chemistry. Marcel Dekker, New York, pp 331–392

    Google Scholar 

  12. Atlla RH, Van der Hart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285

    Article  Google Scholar 

  13. Girio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800

    Article  CAS  Google Scholar 

  14. Grohmann K, Torget R, Himmel M (1985) Optimization of dilute acid pretreatment of biomass. Biotechnol Bioeng Symp 15:59–80

    Google Scholar 

  15. Kabel MA, Carvalheiro F, Garrote G, Avgerinos E, Koukios E, Parajo JC, Girio FM, Schols HA, Voragen AGJ (2002) Hydrothermally treated xylan rich byproducts yield different classes of xylo-oligosaccharides. Carbohydr Polym 50(1):47–56

    Article  CAS  Google Scholar 

  16. Allen SG, Schulman D, Lichwa J, Antal MJ, Laser M, Lynd LR (2001) A comparison between hot liquid water and steam fractionation of corn fiber. Ind Eng Chem Res 40(13):2934–2941

    Article  CAS  Google Scholar 

  17. Vila C, Garrote G, Dominguez H, Parajo JC (2002) Hydrolytic processing of rice husks in aqueous media: a kinetic assessment. Collect Czechoslov Chem Commun 67(4):509–530

    Article  CAS  Google Scholar 

  18. Torget R, Walter P, Himmel M, Grohmann K (1991) Dilute-acid pretreatment of corn residues and short-rotation woody crops. Appl Biochem Biotechnol 28–29:75–86

    Article  Google Scholar 

  19. Torget RW, Kim JS, Lee YY (2000) Fundamental aspects of dilute acid hydrolysis/fractionation kinetics of hardwood carbohydrates. 1. Cellulose hydrolysis. Ind Eng Chem Res 39(8):2817–2825

    Article  CAS  Google Scholar 

  20. Rubio M, Tortosa JF, Quesada J, Gomez D (1998) Fractionation of lignocellulosics. Solubilization of corn stalk hemicelluloses by autohydrolysis in aqueous medium. Biomass Bioenergy 15(6):483–491

    Article  CAS  Google Scholar 

  21. Ropars M, Marchal R, Pourquie J, Vandecasteele JP (1992) Large-scale enzymatic hydrolysis of agricultural lignocellulosic biomass. 1. Pretreatment procedures. Bioresour Technol 42(3):197–204

    Article  CAS  Google Scholar 

  22. Garrote G, Dominguez H, Parajo JC (2001) Kinetic modelling of corn cob autohydrolysis. Process Biochem 36(6):571–578

    Article  CAS  Google Scholar 

  23. Dekker RFH, Wallis AFA (1983) Enzymic saccharification of sugarcane bagasse pretreated by autohydrolysis steam explosion. Biotechnol Bioeng 25(12):3027–3048

    Article  CAS  Google Scholar 

  24. Neureiter M, Danner H, Thomasser C, Saidi B, Braun R (2002) Dilute-acid hydrolysis of sugarcane bagasse at varying conditions. Appl Biochem Biotechnol 98–100:49–58

    Article  Google Scholar 

  25. Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291

    Article  CAS  Google Scholar 

  26. De Vries R, Visser J (2001) Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev 65(4):497–522

    Article  Google Scholar 

  27. Aro N, Pakula T, Penttila M (2005) Transcriptional regulation of plat cell wall degradation by filamentous fungi. FEMS Microbiol Rev 29:719–739

    Article  CAS  Google Scholar 

  28. Lee SS, Ha JK, Kang HS, McAllister T, Cheng KJ (1997) Overview of energy metabolism, substrate utilization and fermentation characteristics of ruminal anaerobic fungi. Korean J Anim Nutr Feed Stuffs 21:295–314

    Google Scholar 

  29. Henrissat B, Vigny B, Buleon A, Perez S (1988) Possible adsorption sites of cellulases on crystalline cellulose. FEBS Lett 231:177–182

    Article  CAS  Google Scholar 

  30. Barr BK, Hsieh YL, Ganem B, Wilson DB (1996) Identification of two functionally different classes of exocellulases. Biochemistry 35(2):586–592, ISSN0006-2960

    Article  CAS  Google Scholar 

  31. Kubicek CP, Penttila ME (1998) Regulation of production of plant polysaccharide degrading enzymes by Trichoderma. In: Harman GE, Kubicek CP (eds) Trichoderma and Gliocladium, vol 2. Taylor & Francis, London, pp 49–72

    Google Scholar 

  32. Nogawa M, Goto M, Okada H, Morikawa Y (2001) L-Sorbose induces cellulase gene transcription in the cellulolytic fungus Trichoderma reesei. Curr Genet 38:329–334

    Article  CAS  Google Scholar 

  33. Van den Brink J, De Vries RP (2011) Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol 91(6):1477–1492

    Article  CAS  Google Scholar 

  34. Zhao Z, Liu H, Wang C, Xu JR (2013) Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genomics 14:274

    Article  CAS  Google Scholar 

  35. Beeson WT, Phillips CM, Cate JH, Marletta MA (2012) Oxidative cleavage of cellulose by fungal copper dependent polysaccharide monooxygenases. J Am Chem Soc 134:890–892

    Article  CAS  Google Scholar 

  36. Quinlan RJ, Sweeney MD, Lo Leggio L, Otten H, Poulsen JC (2011) Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci U S A 108:15079–15084

    Article  CAS  Google Scholar 

  37. Saloheimo M, Paloheimo M, Hakola S, Pere J, Swanson B (2002) Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. Eur J Biochem 269:4202–4211

    Article  CAS  Google Scholar 

  38. Gourlay K, Hu J, Arantes V, Andberg M, Saloheimo M, Penttila M, Saddler J (2013) Swollenin aids in the amorphogenesis step during the enzymatic hydrolysis of pretreated biomass. Bioresour Technol 142:498–503

    Article  CAS  Google Scholar 

  39. Kang K, Shaowen W, Guohong L, Gang L, Xing M (2013) Characterization of a novel swollenin from Penicillium oxalicum in facilitating enzymatic saccharification of cellulose. BMC Biotechnol 13:42

    Article  CAS  Google Scholar 

  40. Teeri TT, Koivula A, Linder M, Wohlfahrt G, Divne C, Jones TA (1998) Trichoderma reesei cellobiohydrolases: why so efficient on crystalline cellulose? Biochem Soc Trans 26:173–178

    Article  CAS  Google Scholar 

  41. Bayer EA, Belaich JP, Shoham Y, Lamed R (2004) The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58:521–554

    Article  CAS  Google Scholar 

  42. Kubicek CP, Mühlbauer G, Klotz M, John E, Kubicek-Pranz EM (1988) Properties of a conidial-bound cellulase enzyme system from Trichoderma reesei. J Gen Microbiol 134:1215–1222

    CAS  Google Scholar 

  43. El-Gogary S, Leite A, Crivellaro O, Eveleigh DE, El-Dorry H (1989) Mechanism by which cellulose triggers cellobiohydrolase I gene expression in Trichoderma reesei. Proc Natl Acad Sci U S A A86:6138–6141

    Article  Google Scholar 

  44. Foreman PK, Brown D, Dankmeyer L, Dean R, Diener S, Dunn-Coleman NS, Goedegebuur F, Houfek TD, England GJ, Kelley AS, Meerman HJ, Mitchell T, Mitchinson C, Olivares HA, Teunissen PJ, Yao J, Ward M (2003) Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J Biol Chem 278(34):31988–31997

    Article  Google Scholar 

  45. Ilmen M, Saloheimo A, Onnela ML, Penttila ME (1997) Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei. Appl Environ Microbiol 63(4):1298–1306

    CAS  Google Scholar 

  46. Munster JM, Daly P, Delmas S, Pullan ST, Blythe MJ, Malla S, Kokolski M, Noltorp ECM, Wennberg K, Fetherston R, Beniston R, Yu X, Dupree P, Archer DB (2014) The role of carbon starvation in the induction enzymes that degrade plant-derived carbohydrates in Aspergillus niger. Fungal Genet Biol 72:34–47

    Article  CAS  Google Scholar 

  47. Vaheri M, Leisola M, Kauppinen V (1979) Transglycosylation products of cellulase system of Trichoderma reesei. Biotechnol Tech 1:696–699

    Google Scholar 

  48. Fowler T, Brown RD Jr (1992) The bgl1 gene encoding extracellular beta-glucosidase from Trichoderma reesei is required for rapid induction of the cellulase complex. Mol Microbiol 6(21):3225–3235

    Article  CAS  Google Scholar 

  49. Bisaria VS, Mishra S (1989) Regulatory aspects of cellulase biosynthesis and secretion. Crit Rev Biotechnol 9(2):61–103

    Article  CAS  Google Scholar 

  50. Hrmova M, Petrakova E, Biely P (1991) Induction of cellulose- and xylan-degrading enzyme systems in Aspergillus terreus by homo- and heterodisaccharides composed of glucose and xylose. J Gen Microbiol 137(3):541–547

    Article  CAS  Google Scholar 

  51. Ding SJ, Ge W, Buswell JA (2001) Endoglucanase I from the edible straw mushroom, Volvariella volvacea. Purification, characterization, cloning and expression. Eur J Biochem 268(22):5687–5695

    Article  CAS  Google Scholar 

  52. Collins T, Meuwis M, Stals I, Claessens M, Feller G, Gerday C (2002) A novel family 8 xylanase: functional and physio-chemical characterization. J Biol Chem 277:35133–35139

    Article  CAS  Google Scholar 

  53. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active enzymes database (Cazy): an expert resource for glycogenomics. Nucleic Acids Res 37(Database issue):D233–D238

    Article  CAS  Google Scholar 

  54. Dodd D, Cann IKO (2009) Enzymatic deconstruction of xylan for biofuel production. GCB Bioenergy 1:2–17

    Article  CAS  Google Scholar 

  55. Lagaert S, Belien T, Volckaert G (2009) Plant cell walls: protecting the barrier from degradation by microbial enzymes. Semin Cell Dev Biol 20:1064–1073

    Article  CAS  Google Scholar 

  56. Wong KKY, Tan LUL, Saddler JN (1988) Multiplicity of b-1,4-xylanases in microorganisms: functions and applications. Microbiol Rev 52:305–317

    CAS  Google Scholar 

  57. Biely P, Vrsanska M, Tenkanen M, Kluepfel D (1997) Endo-b-1-4-xylanase families: differences in catalytic properties. J Biotechnol 57:151–166

    Article  CAS  Google Scholar 

  58. Maslen SL, Goubet F, Adam A, Dupree P, Stephens E (2007) Structural elucidation of arabinoxylan isomers by normal phase HPLC-MALDI-TOF/TOF-MS/MS. Carbohydr Res 342:724–735

    Article  CAS  Google Scholar 

  59. Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ (2007) Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol 25(2):221–231

    Article  Google Scholar 

  60. Tomme P, Warren RAJ, Gilkes NR (1995) Cellulose hydrolysis by bacteria and fungi. Adv Microb Physiol 37:1–81

    Article  CAS  Google Scholar 

  61. Zanoelo FF, Polizeli MLTM, Terenzi HF, Jorge JA (2004) Purification and biochemical properties of a thermostable xylose-tolerant b-D-xylosidase from Scytalidium thermophilum. J Ind Microbiol Biotechnol 31:170–176

    Article  CAS  Google Scholar 

  62. Knob A, Terrasan CRF, Carmona EC (2010) β-xylosidase from filamentous fungi: an overview. World J Microbiol Biotechnol 26:389–407

    Article  CAS  Google Scholar 

  63. Kristufek D, Zeilinger S, Kubicek CP (1995) Regulation of b-xylosidase formation by xylose in Trichoderma reesei. Appl Microbiol Biotechnol 42:413–417

    Article  Google Scholar 

  64. Andrade SV, Polizeli MLTM, Terenzi HF, Jorge JA (2004) Effect of carbon source on the biochemical properties of the β-xylosidase produced by Aspergillus versicolor. Process Biochem 39:1931–1938

    Article  CAS  Google Scholar 

  65. Polizeli MLTM, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591

    Article  CAS  Google Scholar 

  66. Xiong JS, Balland-Vanney M, Xie ZP, Schultze M, Kondorosi A, Kondorosi E (2007) Molecular cloning of a bifunctional b-xylosidase/a-L-arabinosidase from alfalfa roots: heterologous expression in Medicago truncatula and substrate specificity of the purified enzyme. J Exp Bot 58:2799–2810

    Article  CAS  Google Scholar 

  67. Saha BC (2000) a-L-Arabinofuranosidases: biochemistry, molecular biology and application in biotechnology. Biotechnol Adv 18:403–423

    Article  CAS  Google Scholar 

  68. Arsovski AA, Popma TM, Haughn GW, Carpita NC, McCann MC, Western TL (2009) AtBXL1 encodes a bifunctional b-d-xylosidase/a-L-arabinofuranosidase required for pectic arabinan modification in Arabidopsis mucilage secretory cells1[C][W][OA]. Plant Physiol 150:1219–1234

    Article  CAS  Google Scholar 

  69. Panagiotou G, Topakas E, Economou L, Kekos D, Macris BJ, Christakopoulos P (2003) Induction, purification, and characterization of two extracellular a-L-arabinofuranosidases from Fusarium oxysporum. Can J Microbiol 49:639–644

    Article  CAS  Google Scholar 

  70. Allgaier M, Reddy A, Park JI, Ivanova N, Dhaeseleer P, Lowry S (2010) Targeted discovery of glycoside hydrolases from a switchgrass-adapted compost community. PLoS One 5:e8812. doi:10.1371/journal.pone.0008812

    Article  CAS  Google Scholar 

  71. Hinz SWA, Pouvreau L, Joosten R, Bartels J, Jonathan MC, Wery J (2009) Hemicellulase production in Chrysosporium lucknowense C1. J Cereal Sci 50:318–323

    Article  CAS  Google Scholar 

  72. Javier PFI, Oscar G, Sanz-Aparicio J, Dıaz P (2007) Chapter 2: Xylanases: molecular properties and applications. Ind Enzymes Section A: 65–82

    Google Scholar 

  73. Subramaniyan S, Prema P (2002) In: Polaina J Macabe AP (ed). Biotechnology of microbial xylanases: enzymology, molecular biology and application. Crit Rev Biotechnol 22:33–46

    Google Scholar 

  74. Li XL, Skory CD, Cotta MA, Puchart V, Biely P (2008) Novel family of carbohydrate esterases, based on identification of the Hypocrea jecorina acetyl esterase gene. Appl Environ Microbiol 74:7482–7489

    Article  CAS  Google Scholar 

  75. Wet BJM, Prior BA (2004) Chapter 14: Microbial a-glucuronidases. In: Lignocellulose biodegradation, ch014 ACS symposium series, American chemical society, Washington DC, USA vol 889. pp 241–254. doi:10.1021/bk-2004-0889

    Google Scholar 

  76. Fattah AFA, Hashem AM, Ismail AMS, El-Refai MA (2009) Purification and Some Properties of a-mannanase from Aspergillus Oryzae NRRL 3448. J Appl Sci Res 5:2067–2073

    Google Scholar 

  77. Bauer AW, Kirby WM, Sherris JC, Turck M (1996) Antibiotic susceptibility testing by standardized single disc method. Am J Clin Pathol 44:493–496

    Google Scholar 

  78. Songsiriritthigul C, Buranabanyat B, Haltrich D, Yamabhai Y (2010) Efficient recombinant expression and secretion of a thermostable GH26 mannan endo-1,4-b-mannosidase from Bacillus licheniformis in Escherichia coli. Microbial Cell Fact 9:20

    Article  CAS  Google Scholar 

  79. Ademark P, Larsson M, Tjerneld F, Stalbrand H (2001) Multiple α-galactosidases from Aspergillus niger: purification, characterization and substrate specificities. Enzyme Microb Technol 29:441–448

    Article  CAS  Google Scholar 

  80. de Vries RP, Visser J (1999) Regulation of the feruloyl esterase (faeA) gene from Aspergillus niger. Appl Environ Microbiol 65(12):5500–5503

    Google Scholar 

  81. de Vries RP, van de Vondervoort PJ, Hendriks L, van de Belt M, Visser J (2002) Regulation of the alpha-glucuronidase-encoding gene (aguA) from Aspergillus niger. Mol Genet Genomics 268(1):96–102

    Article  CAS  Google Scholar 

  82. de Vries RP, Visser J, de Graaff LH (1999) CreA modulates the XlnR-induced expression on xylose of Aspergillus niger genes involved in xylan degradation. Res Microbiol 150(4):281–285

    Article  Google Scholar 

  83. de Groot MJ, van de Vondervoort PJ, de Vries RP, vanKuyk PA, Ruijter GJ, Visser J (2003) Isolation and characterization of two specific regulatory Aspergillus niger mutants shows antagonistic regulation of arabinan and xylan metabolism. Microbiology 149(Pt 5):1183–1191

    Article  CAS  Google Scholar 

  84. Willick GE, Seligy VL (1985) Multiplicity in cellulases of Schizophyllum commune. Eur J Biochem 151:89–96

    Article  CAS  Google Scholar 

  85. Badhan AK, Chadha BS, Sonia KG, Saini HS, Bhat MK (2004) Functionally diverse multiple xylanases of thermophilic fungus Myceliophthora sp. IMI 387099. Enzyme Microb Technol 35:460–466

    Article  CAS  Google Scholar 

  86. Ito T, Yokoyama E, Sato H, Ujita M, Funaguma T, Furukawa K (2003) Xylosidases associated with the cell surface of Penicillium herquei IFO 4674. J Biosci Bioeng 96:354–359

    Article  CAS  Google Scholar 

  87. Ghatora SK, Chadha BS, Saini HS, Bhat MK, Faulds CB (2006) Diversity of plant cell wall esterases in thermophilic and thermotolerant fungi. J Biotechnol 125:434–445

    Article  CAS  Google Scholar 

  88. Kumar R, Wyman CE (2009) Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies. Biotechnol Prog 25:302–314

    Article  CAS  Google Scholar 

  89. Valjamae P, Sild V, Pettersson G, Johansson G (1999) Acid hydrolysis of bacterial cellulose reveals different modes of synergistic action between cellobiohydrolase I and endoglucanase I. Eur J Biochem 266:327–334

    Article  CAS  Google Scholar 

  90. Zhang Y-HP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88(7):797–824

    Article  CAS  Google Scholar 

  91. Andersen N, Johansen KS, Michelsen M, Stenby EH, Krogh KB, Olsson L (2008) Hydrolysis of cellulose using mono-component enzymes shows synergy during hydrolysis of phosphoric acid swollen cellulose (PASC), but competition on Avicel. Enzyme Microb Technol 42:362–370

    Article  CAS  Google Scholar 

  92. Woodward J (1991) Synergism in cellulase systems. Bioresour Technol 36:67–75

    Article  CAS  Google Scholar 

  93. Nidetzky B, Steiner W, Hayn M, Claeyssens M (1994) Cellulose hydrolysis by the cellulases from Trichoderma reesei: a new model for synergistic interaction. Biochem J 298:705–710

    Article  CAS  Google Scholar 

  94. Coughlan MP, Hazlewood GP (1993) Beta-1,4-D-xylan-degrading enzyme systems: biochemistry, molecular biology and applications. Biotechnol Appl Biochem 17(3):259–289

    Google Scholar 

  95. Kovacs K (2009) Production of cellulolytic enzymes with Trichoderma atroviride mutants for the biomass-to-bioethanol process. Lund University, Sweden

    Google Scholar 

  96. Biely P, Vr Sansk BM (1986) Xylanase of Cryptococcus albidus. Methods Enzymol 160:638–648

    Article  Google Scholar 

  97. Biely P (1985) Microbial xylanolytic systems. Trends Biotechnol 3:286–290

    Article  CAS  Google Scholar 

  98. Vardakou M, Katapodis P, Topakas E, Kekos D, Macris BJ, Christakopoulos P (2004) Synergy between enzymes involved in the degradation of insoluble wheat flour arabinoxylan. Innovative Food Sci Emerg Technol 5:107–112

    Article  CAS  Google Scholar 

  99. Faulds CB, Zanichelli D, Crepin VF, Connerton IF, Juge N, Bhat MK (2003) Specificity of feruloyl esterases for water-extractable and water-unextractable feruloylated polysaccharides: influence of xylanase. J Cereal Sci 38:281–288

    Article  CAS  Google Scholar 

  100. De Vries RP, Kester HC, Poulsen CH, Benen JA, Visser J (2000) Synergy between enzymes from Aspergillus involved in the degradation of plant cell wall polysaccharides. Carbohydr Res 327:401–410

    Article  Google Scholar 

  101. Hashimoto T, Nakata Y (2003) Synergistic degradation of arabinoxylan with α-L-arabinofuranosidase, xylanase and β-xylosidase from soy sauce koji mold, Aspergillus oryzae, in high salt condition. J Biosci Bioeng 95(2):164–169

    Article  CAS  Google Scholar 

  102. Mandels M, Sternberg D (1976) Recent advances in cellulase technology. Ferment Technol 54:267–286

    CAS  Google Scholar 

  103. Ferreira NL, Margeot A, Blanquet S, Berrin JG (2014) Use of cellulases from Trichoderma reesei in the twenty-first century—part I: current industrial uses and future applications in the production of second ethanol generation. Biotechnol Biol Trichoderma. doi:10.1016/B978-0-444-59576-8.00017-5

    Google Scholar 

  104. Martins LF, Kolling D, Camassola M, Dillon AJ, Ramos LP (2008) Comparison of Penicillium echinulatum and Trichoderma reesei cellulases in relation to their activity against various cellulosic substrates. Bioresour Technol 99:1417–1424

    Article  CAS  Google Scholar 

  105. Sharma A, Khare SK, Gupta MN (2001) Hydrolysis of rice hull by crosslinked Aspergillus niger cellulase. Bioresour Technol 78:281–284

    Article  CAS  Google Scholar 

  106. Valaskova V, Baldrian P (2006) Degradation of cellulose and hemicelluloses by the brown rot fungus Piptoporus betulinus production of extracellular enzymes and characterization of the major cellulases. Microbiology 152:3613–3619

    Article  CAS  Google Scholar 

  107. Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26(5):553–560

    Article  CAS  Google Scholar 

  108. Gusakov AV, Sinitsyn AP (2012) Cellulases from Penicillium species for producing fuels from biomass. Biofuels 3(4):463–477

    Article  CAS  Google Scholar 

  109. Shi QQ, Sun J, Yu HL, Li CH, Bao J, Xu JH (2011) Catalytic performance of corn stover hydrolysis by a new isolate Penicillium sp. ECU0913 producing both cellulase and xylanase. Appl Biochem Biotechnol 164:819–830

    Article  CAS  Google Scholar 

  110. King BC, Waxman KD, Nenni NV, Walker LP, Bergstrom GC, Gibson DM (2011) Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi. Biotechnol Biofuels 4:4

    Article  CAS  Google Scholar 

  111. Juge N, Svensson B (2006) Proteinaceous inhibitors of carbohydrate-active enzymes in cereals: implication in agriculture, cereal processing and nutrition. J Sci Food Agric 86:1573–1586

    Article  CAS  Google Scholar 

  112. Ortega J (1994) Cell wall degrading enzyme produced by phytopathogenic fungus Colletotrichum gloeosporioides. Texas J Sci 228:1–6

    Google Scholar 

  113. Falkoski DL, Guimarães VM, de Almeida MN, Alfenas AC, Colodette JL, de Rezende ST (2013) Chrysoporthe cubensis: a new source of cellulases and hemicellulases to application in biomass saccharification processes. Bioresour Technol 130:296–305

    Article  CAS  Google Scholar 

  114. Schwarze F, Engels J, Mattheck C (2000) Fungal strategies of wood decay in trees. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  115. Bey M, Berrin JG, Poidevin L, Sigoillot JC (2011) Heterologous expression of Pycnoporus cinnabarinus cellobiose dehydrogenase in Pichia pastoris and involvement in saccharification processes. Microb Cell Fact 10(113):1–15

    Google Scholar 

  116. Kuhad R, Singh A (2007) Lignocellulose biotechnology future prospects. IK International Publishing House, New Delhi

    Google Scholar 

  117. Tewalt J, Schilling J (2010) Assessment of saccharification efficacy in the cellulase system of the brown rot fungus Gloeophyllum trabeum. Appl Microbiol Biotechnol 86(6):1785–1793

    Article  CAS  Google Scholar 

  118. Ratto M, Ritschkoff A, Viikari L (1997) The effect of oxidative pretreatment on cellulose degradation by Poria placenta and Trichoderma reesei cellulases. Appl Microbiol Biotechnol 48(1):53–57

    Article  CAS  Google Scholar 

  119. Ritschkoff AC (1996) Decay mechanisms of brown-rot fungi. VTT Technical Research Centre of Finland, Espoo, 105 p. Publication No. 268

    Google Scholar 

  120. Arantes V, Jellison J, Goodell B (2012) Peculiarities of brown-rot fungi and biochemical Fenton reaction with regard to their potential as a model for bioprocessing biomass. Appl Microbiol Biotechnol 94(2):323–338

    Article  CAS  Google Scholar 

  121. De-Paula EH, Ramos LP, Azevedo MD (1999) The potential of Humicola grisea var. Thermoidea for bioconversion of sugarcane bagasse. Bioresour Technol 68:35–41

    Article  CAS  Google Scholar 

  122. Rossi MS, Poças-Fonseca MJ, Azevedo MO (2007) Biotechnology: future prospect. In: Kuhad RC, Singh A (eds) Lignocellulose biotechnology: future prospects. I.K. International, New Delhi, pp 97–106

    Google Scholar 

  123. Mandalari G, Bisignano G, Lo Curto RB, Waldron KW, Faulds CB (2008) Production of feruloyl esterases and xylanases by Talaromyces stipitatus and Humicola grisea var. thermoidea on industrial food processing by-products. Bioresour Technol 99:5130–5133

    Article  CAS  Google Scholar 

  124. Medeiros RG, Silva FG, Salles BC, Estelles RS, Filho E (2002) The performance of fungal xylan-degrading enzyme preparations in elemental chlorine-free bleaching for eucalyptus pulp. J Ind Microbiol Biotechnol 28:204–206

    Article  CAS  Google Scholar 

  125. Moriya RY, Goncalves AR, Faria FP (2005) Enzymatic bleaching of organosolv sugarcane bagasse pulps with recombinant xylanase of the fungus Humicola grisea and with commercial Cartazyme HS xylanase. Appl Biochem Biotechnol 121:195–203

    Article  Google Scholar 

  126. Miettinen-Oinonen A, Londesborough J, Joutsjoki V, Lantto R, Vehmaanpera J, Biotec PL (2004) Three cellulases from Melanocarpus albomyces with applications in the textile industry. Enzyme Microb Technol 34:332–341

    Article  CAS  Google Scholar 

  127. Saraswat V, Bisaria VS (2000) Purification characterization and substrate specificity of xylanase isoenzyme from Melanocarpus albomyces. Biosci Biotechnol Biochem 64:1173–1180

    Article  CAS  Google Scholar 

  128. Narang S, Sahai V, Bisaria VS (2001) Optimization of xylanase production by Melanocarpus albomyces IIS 68 in solid-state fermentation using response surface methodology. J Biosci Bioeng 91:425–427

    Article  CAS  Google Scholar 

  129. Hashimoto H, Iwaasa T, Yokotsuka T (1972) Thermostable acid protease produced by Penicillium duponti K1014, a true thermophilic fungus newly isolated from compost. Appl Microbiol 24(6):986–992

    CAS  Google Scholar 

  130. Chen HZ, He Q (2012) Value-added bioconversion of biomass by solid-state fermentation. J Chem Technol Biotechnol 87(12):1619–1625

    Article  CAS  Google Scholar 

  131. Holker U, Hofer M, Lenz J (2004) Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl Microbiol Biotechnol 64(2):175–186

    Article  CAS  Google Scholar 

  132. Singhania RR, Patel AK, Soccol CR, Pandey A (2009) Recent advances in solid-state fermentation. Biochem Eng J 44(1):13–18

    Article  CAS  Google Scholar 

  133. Shah A, Madamwar D (2005) Xylanase production under solid-state fermentation and its characterization by an isolated strain of Aspergillus foetidus in India. World J Microbiol Biotechnol 21:233–243

    Article  CAS  Google Scholar 

  134. Gonzalez JB (2012) Solid state fermentation: physiology of solid medium its molecular basis and applications. Process Biochem 47:175–185

    Article  CAS  Google Scholar 

  135. Li Y, Peng X, Chen H (2013) Comparative characterization of proteins secreted by Neurospora sitophilain solid-state and submerged fermentation. J Biosci Bioeng 116(4):493–498

    Google Scholar 

  136. Tengerdy RP, Szakacs G (2003) Bioconversion of lignocelluloses in solid substrate fermentation. Biochem Eng J 13:169–179

    Article  CAS  Google Scholar 

  137. Gutierrez-Correa M, Tengerdy RP (1997) Production of cellulose on sugarcane bagasse by fungal mixed culture solid substrate fermentation. Biotechnology 10:358–364

    Google Scholar 

  138. Xia L, Cen P (1999) Cellulase production by solid state fermentation on lignocellulosic waste from xylose industry. Process Biochem 34:909–912

    Article  CAS  Google Scholar 

  139. Muthuvelayudham R, Viruthagir T (2006) Fermentative production and kinetics of cellulose protein on Trichoderma reesei using sugarcane bagasse and rice straw. Afr J Biotechnol 5:1873–1881

    CAS  Google Scholar 

  140. Sukumaran R, Singhania R, Mathew G, Pandey A (2009) Cellulase production using biomass feed-stock and its application in lignocellulose saccharification for bio-ethanol production. Renew Energy 34:421–424

    Article  CAS  Google Scholar 

  141. Delabona PS, Pirota RDPB, Codima CA, Tremacoldic CR, Rodrigues A, Farinas CS (2013) Effect of initial moisture content on two Amazon rainforest Aspergillus strains cultivated on agro-industrial residues: Biomass-degrading enzymes production and characterization. Ind Crop Prod 42:236–242

    Article  CAS  Google Scholar 

  142. Gao J, Weng H, Zhu D, Yuan M, Guan F, Xi Y (2008) Production and characterization of cellulolytic enzymes from the thermoacidophilic fungus Aspergillus terreus M11 under solid-state fermentation of corn stover. Bioresour Technol 99:7623–7629

    Article  CAS  Google Scholar 

  143. Narra M, Dixit G, Madamwar D, Shah AR (2012) Production of cellulases by solid state fermentation with Aspergillus terreus and enzymatic hydrolysis of mild alkali-treated rice straw. Bioresour Technol 121:355–361

    Article  CAS  Google Scholar 

  144. Kalogeris E, Fountoukides G, Kekos D, Macris BJ (1999) Design of solid state bioreactor for thermophilic microorganisms. Bioresour Technol 67:313–315

    Article  CAS  Google Scholar 

  145. Mo HT, Zhang XY, Li ZH (2004) Control of gas phase for enhanced cellulase production by Penicillium decumbens in solid-state culture. Process Biochem 39:1293–1297

    Article  CAS  Google Scholar 

  146. Camassola M, Dillon AJP (2007) Production of cellulases and hemicellulases by Penicillium echinulatum grown on pretreated sugarcane bagasse and wheat bran in solid state fermentation. Appl Microbiol 103:2196–2204

    Article  CAS  Google Scholar 

  147. Panagiotou G, Kekos M, Macris BJ, Christakopoulos P (2003) Production of cellulolytic and xylanolytic enzymes by Fusarium oxysporum grown on corn stover in solid state fermentation. Ind Crops Prod 18:37–45

    Article  CAS  Google Scholar 

  148. Bandhan AK, Chadha BS, Kaur J, Saini HS, Bhat MK (2007) Production of multiple xylanolytic and cellulolytic enzymes by thermophilic fungus Myceliophthora sp. IMI 387099. Bioresour Technol 98:504–510

    Article  CAS  Google Scholar 

  149. Kachlishvili E, Penninckx MJ, Tsiklauri N, Elisashvili V (2005) Effect of nitrogen source on lignocellulolytic enzyme production by white rot basidiomycetes under solid state cultivation. World J Microbial Biotechnol 224:391–397

    Google Scholar 

  150. Deswal D, Khasa YP, Kuhad R (2011) Optimization of cellulose production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. Bioresour Technol 102:6065–6072

    Article  CAS  Google Scholar 

  151. Chapla D, Divecha J, Madamwa D, Shah A (2010) Utilization of agro-industrial waste for xylanase production by Aspergillus foetidus MTCC 4898 under solid state fermentation and its application in saccharification. Biochem Eng J 49:361–369

    Article  CAS  Google Scholar 

  152. Smit JP, Rinzema A, Tramper J, Van Sonsbeek HM, Knol W (1996) Solid-state fermentation of wheat bran by Trichoderma reesei QM9414: substrate composition changes, C balance, enzyme production, growth and kinetics. Appl Microbiol Biotechnol 46(5–6):489–496

    Article  Google Scholar 

  153. Ferreira G, Boer CG, Peralta RM (1999) Production of xylanolytic enzymes by Aspergillus tamarii in solid state fermentation. FEMS Microbiol Lett 173:335–339

    Article  CAS  Google Scholar 

  154. Patel H, Chapla D, Divecha J, Shah A (2015) Improved yield of α-L-arabinofuranosidase by newly isolated Aspergillus niger ADH-11 and synergistic effect of crude enzyme on saccharification of maize stover. Bioresour Bioprocess 2:11

    Article  Google Scholar 

  155. Roche N, Desgranges C, Durand A (1994) Study on the solid-state production of a thermostable a-L-arabinofuranosidase of Thermoascus aurantiacus on sugar beet pulp. J Biotechnol 38:43–50

    Article  CAS  Google Scholar 

  156. Michele A, Mireille H, Sevastianos R, Eric R, Michel D, Laurence LM, Marc L, Marcel A (2002) Feruloyl esterase from Aspergillus niger a comparison of the production in solid state and submerged fermentation. Process Biochem 38:685–691

    Article  Google Scholar 

  157. Gubitz GM, Hayn M, Sommerauer M, Steiner W (1996) Mannan-degrading enzymes from Sclerotium rolfsii: characterisation and synergism of two endo β-mannanases and a β-mannosidase. Bioresour Technol 58:127–135

    Article  Google Scholar 

  158. Regalado C, Garcıa-Almendarez BE, Venegas-Barrera LM, Tellez-Jurado A, Rodrıguez-Serrano G, Huerta-Ochoa S, Whitaker JR (2000) Production, partial purification and properties of b-mannanases obtained by solid substrate fermentation of spent soluble coffee wastes and copra paste using Aspergillus oryzae and Aspergillus niger. J Sci Food Agric 80:1343–1350. Online

    Google Scholar 

  159. Abdeshahian P, Samat N, Hamid AA, Yusoff WMW (2010) Utilization of palm kernel cake for production of b-mannanase by Aspergillus niger FTCC 5003 in solid substrate fermentation using an aerated column bioreactor. J Ind Microbiol Biotechnol 37:103–109

    Article  CAS  Google Scholar 

  160. Portnoy T, Margeot A, Seidl-Seiboth V, Crom SL, Chaabane FB, Linke R, Seiboth B, Kubicek CP (2011) Differential regulation of the cellulase transcription factors XYR1, ACE2, and ACE1 in Trichoderma reesei strains producing high and low levels of cellulase. Eukaryotic Cell 10(2):262–271

    Google Scholar 

  161. Yoon LW, Ang TN, Ngoh GC, Chua ASM (2014) Fungal solid-state fermentation and various methods of enhancement in cellulase production. Biomass Bioenergy 67:319–338

    Article  CAS  Google Scholar 

  162. Archana S, Sathyanarayana T (1997) Xylanase production by thermophilic Bacillus licheniformis A99 in solid-state fermentation. Enzyme Microb Technol 21:12–17

    Article  CAS  Google Scholar 

  163. Sun X, Liu Z, Qu Y, Li X (2008) The effect of wheat bran composition on the production of biomass hydrolyzing enzymes by Penicillium decumbens. Appl Biochem Biotechnol 146:119–128

    Article  CAS  Google Scholar 

  164. Ang SK, Shaza EM, Adibah Y, Suraini AA, Madihah MS (2013) Production of cellulases and xylanase by Aspergillus fumigatus SK1 using untreated oil palm trunk through solid state fermentation. Process Biochem 48(9):1293–1302

    Article  CAS  Google Scholar 

  165. Cardona CA, Quintero JA, Paz IC (2010) Production of bioethanol from sugarcane bagasse: status and perspective. Bioresour Technol 101(13):4754–4766

    Article  CAS  Google Scholar 

  166. Velazquez-Cedeno MA, Mata G, Savoie JM (2002) Waste-reducing cultivation of Pleurotus ostreatus and Pleurotus pulmonarius on coffee pulp: changes in the production of some lignocellulolytic enzymes. World J Microbiol Biotechnol 18(3):201–207

    Article  CAS  Google Scholar 

  167. Paredes-Lopez O, Guzman-Maldonado SH, Alpuche-Solis A (1998) Solid substrate fermentation: a biotechnological approach to bioconversion of wastes. In: Martin AM (ed) Bioconversion of waste materials to industrial products, 2nd edn. Blackie Academics and Professional, London, pp 103–153. ISBN 0 7514 0423 3

    Chapter  Google Scholar 

  168. Farinas CS (2015) Developments in solid state fermentation for the production of biomass degrading enzymes for the bioenergy sector. Renew Sustain Energy Rev 52:179–188

    Article  CAS  Google Scholar 

  169. Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A (2010) Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzym Microb Technol 46(7):541–549

    Article  CAS  Google Scholar 

  170. Latifian M, Hamidi-Esfahani Z, Barzegar M (2007) Evaluation of culture conditions for cellulase production by two Trichoderma reesei mutants under solid-state fermentation conditions. Bioresour Technol 98:3634–3637

    Article  CAS  Google Scholar 

  171. Mandels M, Reese ET (1957) Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals. J Bacteriol 73(2):269–278

    CAS  Google Scholar 

  172. Mandel M, Weber J (1969) Exoglucanase activity by microorganisms. Adv Chem 95:391–414

    Article  Google Scholar 

  173. Kurakakea M, Osadaa S, Komakia T (2014) Transxylosylation of β-Xylosidase from Aspergillus awamori K4. Biosci Biotechnol Biochem 61:12

    Google Scholar 

  174. Ahamed A, Vermette P (2008) Culture-based strategies to enhance cellulase enzyme production from Trichoderma reesei RUTC30 in bioreactor culture conditions. Biochem Eng J 40(3):399–407

    Article  CAS  Google Scholar 

  175. Acharya B, Mohana S, Jog R, Divecha J, Madamwa D (2010) Utilization of anaerobically treated distillery spent wash for production of cellulases under solid-state fermentation. J Environ Manage 91:2019–2027

    Article  CAS  Google Scholar 

  176. Haapala R, Linko S, Parkkinen E, Suominen P (1994) Production of endo- 1,4-L-glucanase and xylanase by Trichoderma reesei immobilized on polyurethane foam. Biotechnol Tech 8:401–406

    Article  CAS  Google Scholar 

  177. Raghavarao K, Ranganathan T, Karanth N (2003) Some engineering aspects of solid- state fermentation. Biochem Eng J 13:127–135

    Article  CAS  Google Scholar 

  178. Jecu L (2000) Solid state fermentation of agricultural wastes for endoglucanase production. Ind Crops Prod 11:1–5

    Article  CAS  Google Scholar 

  179. Mahmood RT, Asad MJ, Mehboob N, Mushtaq M, Gulfraz M, Asgher M (2013) Production, purification, and characterization of exoglucanase by Aspergillus fumigatus. Appl Biochem Biotechnol 170:895–908

    Article  CAS  Google Scholar 

  180. Brijwani K, Vadlani PV, Hohn KL, Maier DE (2011) Experimental and theoretical analysis of a novel deep-bed solid-state bioreactor for cellulolytic enzymes production. Biochem Eng J 58–59:110–123

    Article  CAS  Google Scholar 

  181. Zhang H, Sang Q, Zhang WH (2012) Statistical optimization of cellulases production by Aspergillus niger HQ-1 in solid state fermentation and partial enzymatic characterization of cellulases on hydrolyzing chitosan. Ann Microbiol 62:629–645

    Article  CAS  Google Scholar 

  182. Chahal DC (1987) Growth characteristics in solid state fermentation for upgrading of protein values of lignocellulose and cellulase production. Am Chem Soc Symp Ser 207: 421–442

    Google Scholar 

  183. Visesturs VE, Steinkraus SV, Leite MP, Berzines AJ, Temgerdy RP (1987) Combined submerged and solid substrate fermentation for the bioconversion of lignocellulose. Biotechnol Bioeng 30:282–288

    Article  Google Scholar 

  184. Barstow LM, Dale BE, Tengerdy RP (1988) Evaporative temperature and moisture control in solid substrate fermentation. Biotechnol Tech 2:237–242

    Article  Google Scholar 

  185. Farinas C, Vitcosque G, Fonseca R, Neto V, Couri S (2011) Modeling the effects of solid state fermentation operating conditions on endoglucanase production using an instrumented bioreactor. Ind Crops Prod 34:1186–1192

    Article  CAS  Google Scholar 

  186. Pirota R, Tonelotto M, Delabona PD, Fonseca RF, Paixao DAA, Baleeiro FCF (2013) Enhancing xylanases production by a new Amazon Forest strain of Aspergillus oryzae using solid-state fermentation under controlled operation conditions. Ind Crops Prod 45:465–471

    Article  CAS  Google Scholar 

  187. Moo-Young M, Moreira AR, Tengerdy RP (1983) In: Smith JE, Berry DR, Cristiansen B (eds) The filamentous fungi, vol IV. Edward Arnold, London, pp 117–198

    Google Scholar 

  188. Jatinder K, Chadha BS, Saini HS (2006) Optimization of culture conditions for production of cellulases and xylanases by Scytalidium thermophilum using response surface methodology. World J Microbiol Biotechnol 22:169–176

    Article  CAS  Google Scholar 

  189. Mekala NK, Singhania RR, Sukumaran RK, Pandey A (2008) Cellulase production under solid-state fermentation by Trichoderma reesei RUT C30: statistical optimization of process parameters. Appl Biochem Biotechnol 151:122–131

    Article  CAS  Google Scholar 

  190. Souzaá MC, Robertoá IC, Milagres AMF (1999) Solid-state fermentation for xylanase production by Thermoascus aurantiacus using response surface methodology. Appl Microbiol Biotechnol 52:768–772

    Article  Google Scholar 

  191. Yao-xing XU, Yan-li LI, Shao-chun XU, Yong LIU, Xin WANG, Jiang-wu TANG (2008) Improvement of xylanase production by Aspergillus niger XY-1 using response surface methodology for optimizing the medium composition. J Zhejiang Univ Sci B 9(7):558–566

    Article  CAS  Google Scholar 

  192. Dashban M, Schraft H, Qin W (2009) Fungal bioconversion of lignocellulosic residues; opportunities and perspectives. Int J Biol Sci 5:578–595

    Article  Google Scholar 

  193. Hu HL, van den Brink J, Gurben BS, Wosten HAB, Gu JD, deVries RP (2011) Improved enzyme production by co-cultivation of Aspergillus niger and Aspergillus oryzae and with other fungi. Int Biodeterior Biodegrad 65:248–252

    Article  CAS  Google Scholar 

  194. Gupte A, Madamwar D (1997) Solid state fermentation of lignocellulosic waste for cellulase and b-glucosidase production by cocultivation of Aspergillus ellipticus and Aspergillus fumigatus. Biotechnol Prog 13:166–169

    Article  CAS  Google Scholar 

  195. Shahzadi T, Anwar Z, Iqbal Z, Anjum A, Aqil T, Bakhtwar (2014) Induced production of exoglucanase, and β-glucosidase from fungal co-culture of T. viride and G. lucidum. Adv Bio Sci Bioeng 5:426–433

    CAS  Google Scholar 

  196. Kalyani D, Lee KM, Kim TS, Li J, Dhiman SS, Kang YC (2013) Microbial consortia for saccharrification of woody biomass and ethanol fermentation. Fuel 107:815–822

    Article  CAS  Google Scholar 

  197. Durand A (2003) Bioreactor designs for solid state fermentation. Biochem Eng J 13:13–25

    Article  Google Scholar 

  198. Mitchell D, Krieger N, Berovic M (2006) Solid state bioreactors fundamentals of design and operation. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  199. Dhillon GS, Oberoi HS, Kaur S, Bansal S, Brar SK (2011) Value addition of agricultural wastes for augmented cellulose and xylanase production through solid state tray fermentation employing mixed culture of fungi. Ind Crops Prod 34:1160–1167

    Article  CAS  Google Scholar 

  200. Brijwani K, Oberoi HS, Vadlani PV (2010) Production of cellulolytic enzyme system in mixed-culture solid state fermentation of soybean hulls supplemented with wheat bran. Process Biochem 45:120–128

    Article  CAS  Google Scholar 

  201. Ridder ER, Nokes SE, Knutson BL (1999) Optimization of solid state fermentation parameters for the production of xylanase by Trichoderma longibrachiatum on wheat bran in a forced aeration system. Trans ASAE 42:1785–1790

    Article  CAS  Google Scholar 

  202. Zanleto M, Shiota VM, Gomes E, da Silva R, Thomeo JC (2012) Endoglucanase production with the newly isolated Myceliophtorasp 1-1D3b in a packed bed solid fermentor. Braz J Microbial 43:1536–1544

    Article  CAS  Google Scholar 

  203. Abdeshahian P, Samat N, Hamid AA, Yisoff WMW (2011) Solid substrate fermentation for cellulose production using palm kernel cake as a renewable lignocellulosic source in a packed bed bioreactor. Biotechnol Bioprocess Eng 16:238–244

    Article  CAS  Google Scholar 

  204. Diaz AB, de Ory-Caro, Blandino A (2009) Solid state fermentation in a rotating drum bioreactor for the production of hydrolytic enzymes. In: Proceedings of Icheap-9:9th international conference on chemical and process engineering, Rome 1–3, vol 17, pp 1041–1046

    Google Scholar 

  205. Alam MZ, Mamun AA, Qudseih IY, Muyibi SA, Salleh HM, Omar NM (2009) Solid state bioconversion of oil palm empty fruit bunches for cellulose enzyme production using a rotary drum bioreactor. Biochem Eng J 46:61–64

    Article  CAS  Google Scholar 

  206. Hansen GH, Lubeck M, Frisvad JC, Lubeck PS, Andersen B (2015) Production of cellulolytic enzymes from ascomycetes: comparison of solid state and submerged fermentation. Process Biochem. doi:10.1016/j.procbio.2015.05.017

    Google Scholar 

  207. Zheng W, Chen HZ (2009) Air pressure pulsation solid state fermentation by multi-strains. J Jilin Agric Sci 36:47–50

    Google Scholar 

  208. Li HQ, Chen HZ (2008) Detoxification of steam-exploded corn straw produced by an industrial-scale reactor. Process Biochem 43:1447–1451

    Article  CAS  Google Scholar 

  209. Wogulis M, Bohan DM, Osbor D, Benyamino R (2012) Rational design of CBH II & beta glucosidase for improved activity and thermostability 34th, Symposium on biotechnology for fuel and chemicals, USA. http://sim.confex.com/sim/34th/webprogram/paper21296.html

  210. White T, Hindle C (2000) Genetic constructs and genetically modified microbes for enhanced production of bet-glucosidase, US Patent 6015703 (to Iogen Corporation, Ottawa, CA) 18 Jan

    Google Scholar 

  211. Watanable M, Tat suki M, Aoyagi k, Sumida N, Takeshi M (2001) Regulatory sequence of cellulase cbh1 genes originating in Trichoderma viride and system for mass producing proteins of peptides therewith, US Patent 6277596 (to Meiji Seika Kaisha Ltd., Tokyo, JP) 21 Aug

    Google Scholar 

  212. Fowler T, Barnett CC, Shoemaker S (1992) Improved saccharification of cellulose by cloning and amplification of the bet-glucosidase gene of Trichoderma reesei. Patent WO/1992/010581 A1 (to GenecorInt. Inc.) 25 June

    Google Scholar 

  213. Ilmen M, Onnela ML, Kelmsdal S, Keranen S, Penttila M (1996) Functional analysis of the cellobiohydrolase 1 promoter of the filamentous fungus Trichoderma reesei. Mol Gen Genet 253:301–314

    Google Scholar 

  214. Nakari-Setala T, Pentilla M (1995) Production of Trichoderma reesei cellulase on glucose containing media. Appl Environ Microbiol 61:3650–3655

    CAS  Google Scholar 

  215. Lavinge JA, Scott BR, Whisse M, Tomashek JJ (2010) Family 6 cellulase with decreased inactivation by lignin; US Patent 20101141100

    Google Scholar 

  216. St-Pierre P, Masri N, Fournier MC, White TC (2012) Modified cellulases with increased thermostability, thermophilicity, and alkalophilicity. US Patent 8101398

    Google Scholar 

  217. Okakura K, Yanai K (2008) Cellulase tolerant to surfactants. US Patent 7374921

    Google Scholar 

  218. White T, Giroux GR, Wallace KEA (2008) Modified xylanases exhibiting improved expression: US Patent 7456005

    Google Scholar 

  219. Sung WL, Tolan JS (2006) Thermostable xylanases: US Patent 7060482

    Google Scholar 

  220. Novozymes anual report 2012; http://report2012.novozymes.com

  221. Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18:355–383

    Article  CAS  Google Scholar 

  222. Viikari L, Tenkanen M, Buchert J, Rättö M, Bailey M, Siikaho M, Linko M (1993) Hemicellulases for industrial applications. In: Saddler JN (ed) Bioconversion of forest and agricultural plant residues. C.A.B. International, Wallingford, pp 131–182

    Google Scholar 

  223. Berlin A, Maximenco V, Gilkes N, Saddler J (2007) Optimization of enzyme complexes for lignocellulose hydrolysis. Biotechnol Bioeng 97:287–296

    Article  CAS  Google Scholar 

  224. Yuan JS, Tiller KH, Al-Ahmad H, Stewart NR, Stewart CN Jr (2008) Plants to power; bioenergy to fuel the future. Tends Plant Sci 13:421–429

    Article  CAS  Google Scholar 

  225. Demirbas A (2007) Producing and using bioethanol as an automotive fuel. Energy Sources Part B 2:391–401

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amita Shah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Shah, A., Patel, H., Narra, M. (2017). Bioproduction of Fungal Cellulases and Hemicellulases Through Solid State Fermentation. In: Mérillon, JM., Ramawat, K. (eds) Fungal Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-25001-4_7

Download citation

Publish with us

Policies and ethics