Skip to main content

Secondary Metabolites in Cheese Fungi

  • Reference work entry
  • First Online:
Fungal Metabolites

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Several filamentous fungi grow on the surface or inside different types of cheese, produce secondary metabolites, and contribute to the organoleptic characteristics of mature cheese. Particularly relevant is the contribution of Penicillium roqueforti to the maturation of blue-veined cheeses (Roquefort, Danablu, Cabrales, etc.). P. roqueforti is inoculated into these cheeses as a secondary starter. This fungus is closely related taxonomically to Penicillium carneum and Penicillium paneum, but these two species are not used as starters because they produce the potent toxin patulin. P. roqueforti Thom has the capability to produce about 20 secondary metabolites of at least seven different families, but it seems that only some of them are produced in microaerobic conditions and accumulate inside the cheese (e.g., andrastins). This article focuses on the biosynthetic pathways, gene clusters, and relevance of the known metabolites of P. roqueforti including roquefortines, PR-toxin and eremofortins, andrastins, mycophenolic acid, clavines (agroclavine and festuclavine), citreoisocoumarin, and orsellinic acid. In addition the biosynthesis of patulin (a P. paneum and P. carneum product) is discussed. Penicillium camemberti grows on the surface of Camembert, Brie, and related white rind cheeses, and the penetration of secondary metabolites inside the cheese is relevant. One of the P. camemberti metabolites, cyclopiazonic acid, is important because of its neurotoxicity and its biosynthesis is reviewed. The removal of toxic metabolites gene clusters by precise gene excision while preserving all other characteristics of the improved starter strains, including enzymes involved in cheese ripening and aroma formation, is now open. A possible strain improvement application to the cheese industry is of great interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ACP:

Acyl-carrier protein

AT:

Acyltransferase

ATCC:

American Type Culture Collection

DMA-PP:

Dimethylallyl diphosphate

DMAT:

Dimethylallyltryptophan

DMOA:

3,5-Dimethylorsellinic acid

FPP:

Farnesyl diphosphate

KS:

Ketosynthase

MFS:

Major facilitator superfamily

MPA:

Mycophenolic acid

6-MSAS:

6-Methyl salicylic acid synthase

MT:

Methyltransferase

nr-PKS:

Non-reductive polyketide synthase

NOX:

N1 hydroxylase

RAPD:

Random amplified polymorphic DNA

RDH:

Roquefortine D dehydrogenase

RPT:

Roquefortine prenyltransferase

SAR:

Starter unit acyltransferase

References

  1. Gillot G, Jany J-L, Coton M, Le Floch G, Debaets S, Ropars J, López-Villavicencio M, Dupont J, Branca A, Giraud T, Coton E (2015) Insights into Penicillium roqueforti morphological and genetic diversity. Plos One 10(6), e0129849

    Article  Google Scholar 

  2. Thom C (1906) Fungi in cheese ripening: Camembert and Roquefort. USDA Bureau of Animal Industrial Bulletin 82:1–39

    Google Scholar 

  3. Engel G, Teuber M (1989) Toxic metabolites from fungal cheese starter cultures (Penicillium camemberti and Penicillium roqueforti). In: van Egmond HP (ed) Mycotoxins in dairy products. Elsevier Applied Science, London

    Google Scholar 

  4. Frisvad JC, Filtenborg O (1989) Terverticillate penicillia: chemotaxonomy and mycotoxin production. Mycologia 81:837–861

    Article  CAS  Google Scholar 

  5. Boysen M, Skouboe P, Frisvad J, Rossen L (1996) Reclassification of the Penicillium roqueforti group into three species on the basis of molecular genetic and biochemical profiles. Microbiology 142:541–549

    Article  CAS  Google Scholar 

  6. Houbraken J, Frisvad JC, Samson RA (2010) Sex in Penicillium series Roqueforti. IMA Fungus 1:171–180

    Article  Google Scholar 

  7. Zeilinger S, Martín JF, García-Estrada C (2015) Fungal secondary metabolites in the OMICS era. In: Zeilinger S, Martín JF, García-Estrada C (eds) Biosynthesis and molecular, vol II. Springer, New York

    Google Scholar 

  8. Martín JF, García-Estrada C, Zeilinger S (eds) (2014) Biosynthesis and molecular genetics of fungal secondary metabolites. Springer, New York

    Google Scholar 

  9. Zeilinger S, Martín JF, García-Estrada C (eds) (2015) Biosynthesis and molecular genetics of fungal secondary metabolites, vol II. Springer, New York

    Google Scholar 

  10. Martín JF, Liras P (2015) Novel antimicrobial and other bioactive metabolites obtained from silent gene clusters. In: Demain AL, Sánchez S (eds) Antibiotics: current innovations and future trends. Horizon Scientific Press and Caister Academic Press, Norfolk

    Google Scholar 

  11. Bergmann S, Schümann J, Scherlach K, Lange C, Brakhage AA, Hertweck C (2007) Genomic-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans. Nat Chem Biol 3:213–217

    Article  CAS  Google Scholar 

  12. Nielsen KF, Sumarah MW, Frisvad JC, Miller JD (2006) Production of metabolites from Penicillium roqueforti complex. J Agric Food Chem 54:3756–3763

    Article  CAS  Google Scholar 

  13. Nielsen KF, Dalsgaard PW, Smedsgaard J, Larsen TO (2005) Andrastins A-D, Penicillium roqueforti metabolites consistently produced in blue-mold ripened cheese. J Agric Food Chem 53:2908–2913

    Article  CAS  Google Scholar 

  14. Fernández-Bodega MA, Mauriz E, Gómez Martín JF (2009) Proteolytic activity, mycotoxins and andrastin A in Penicillium roqueforti strains isolated from Cabrales, Valdeón and Bejes-Tresviso local varieties of blue-veined cheeses. Int J Food Microbiol 136:18–25

    Article  Google Scholar 

  15. García-Estrada C, Ullán RV, Albillos SM, Fernández-Bodega MÁ, Durek P, von Döhren H, Martín JF (2011) A single cluster of coregulated genes encodes the biosynthesis of the mycotoxins roquefortine C and meleagrin in Penicillium chrysogenum. Chem Biol 18:1499–1512

    Article  Google Scholar 

  16. Ali H, Ries MI, Nijland JG, Lankhorst PP, Hankemeier T, Bovenberg R, Vreeken RJ, Driesen AJM (2013) A branched biosynthetic pathway is involved in production of roquefortine and related compounds in Penicillium roqueforti. PlosOne 8, e65328

    Article  CAS  Google Scholar 

  17. Hidalgo PI, Ullán RV, Albillos SM, Montero O, Fernández-Bodega MÁ, García-Estrada C, Fernández-Aguado M, Martín JF (2014) Molecular characterization of the PR-toxin gene cluster in Penicillium roqueforti and Penicillium chrysogenum: cross talk of secondary metabolite pathways. Fungal Gen Biol 62:11–24

    Article  CAS  Google Scholar 

  18. Kosalková K, Domínguez-Santos R, Coton M, Coton E, García-Estrada C, Liras P, Martín JF (2015) A natural short pathway synthesizes roquefortine C but not meleagrin in three different Penicillium roqueforti strains. Appl Microbiol Biotechnol 99:7601–7612

    Article  Google Scholar 

  19. Cheeseman K, Ropars J, Renault P, Dupont J, Gouzy J, Branca A, Abraham AL, Ceppi M, Conseiller E, Debuchy R, Malagnac F, Goarin A, Silar P, Lacoste S, Sallet E, Bensimon A, Giraud T, Brygoo Y (2014) Multiple recent horizontal transfers of a large genomic region in cheese making fungi. Nat Commun 5:2876

    Article  Google Scholar 

  20. Ohmomo S, Sato T, Utagawa T, Abe M (1975) Production of alkaloids and related substances by fungi. Isolation of festuclavine and three new indole alkaloids, roquefortine A, B, and C from cultures of Penicillium roqueforti. Nippon Nogei Kagaku Kaishi 49:615–623

    Article  CAS  Google Scholar 

  21. Scott PM, Merrien MA, Polonsky J (1976) Roquefortine and isofumigaclavine A, metabolites from Penicillium roqueforti. Experientia 32:140–142

    Article  CAS  Google Scholar 

  22. Hymery N, Vasseur V, Coton M, Mounier J, Jany J-L, Barbier G, Coton E (2014) Filamentous fungi and mycotoxins in cheese: a review. Compr Rev Food Sci Food Saf 13:437–456

    Article  CAS  Google Scholar 

  23. Martín JF, Coton M (2016) Blue cheese: microbiota and fungal metabolites. In: Frias J, Martínez-Villaluenga C, Peñas E (eds) Fermented foods in health and disease prevention. Elsevier, New York

    Google Scholar 

  24. Ries MI, Ali H, Lankhorst PP, Hankemeier T, Bovenberg RA, Driessen AJ, Vreeken RJ (2013) Novel key metabolites reveal further branching of the roquefortine/meleagrin biosynthetic pathway. J Biol Chem 288:37289–32195

    Article  CAS  Google Scholar 

  25. Martín JF, Liras P, García-Estrada C (2014) Roquefortine and Prenylated Indole Alkaloids. In: Martín JF, Garcia-Estrada C, Zeilinger S (eds) Biosynthesis and molecular genetics of fungal secondary metabolites. Springer, New York

    Chapter  Google Scholar 

  26. Fontaine K, Passeró E, Vallones L, Hymery N, Coton M, Jany JL, Mounier J, Coton E (2015) Occurrence of roquefortine C, mycophenolic acid and aflatoxin M1 mycotoxins in blue-veined cheeses. Food Control 47:634–640

    Article  CAS  Google Scholar 

  27. Frisvad JC, Smedsgaard J, Larsen TO, Samson RA (2004) Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud Mycol 49:201–241

    Google Scholar 

  28. Martín JF, Liras P (2016) Evolutionary formation of gene clusters by reorganization: the meleagrin/roquefortine paradigm in different fungi. Appl Microbiol Biotechnol 100:1579–1587

    Article  Google Scholar 

  29. Li SM (2009) Evolution of aromatic prenyltransferases in the biosynthesis of indole derivatives. Phytochemistry 70:1746–1757

    Article  CAS  Google Scholar 

  30. Ohmomo S, Oguma K, Ohashi T, Abe M (1978) Isolation of a new indole alkaloid, roquefortine D from cultures of Penicillium roqueforti. Agric Biol Chem 42:2387–2389

    CAS  Google Scholar 

  31. Reshetilova TA, Vinokurova NG, Khmelenina VN, Kozlovsky AG (1995) The role of roquefortine in the synthesis of alkaloids meleagrin, glandicolines A and B, and oxaline in fungi Penicillium glandicola and P. atramentosum. Microbiology 64:27–29

    Google Scholar 

  32. Martín JF, Casqueiro J, Liras P (2005) Secretion systems for secondary metabolites: how producer cells send out messages of intercellular communication. Curr Opin Microbiol 8:282–293

    Article  Google Scholar 

  33. Moreau S, Gaudemer A, Lablache-Combier A, Biguet J (1976) Metabolites de Penicillium roqueforti: PR-toxine et metabolites associes. Tetrahedron Lett 11:833–834

    Article  Google Scholar 

  34. Chang SC, Lu KL, Yeh SF (1993) Secondary metabolites resulting from degradation of PR-toxin by Penicillium roqueforti. Appl Environ Microbiol 59:981–986

    CAS  Google Scholar 

  35. Overy DP, Nielsen KF, Smedsgaard J (2005) Roquefortine/oxaline biosynthesis pathways metabolites in Penicillium ser Corymbifera: in planta production and implications for competitive fitness. J Chem Ecol 31:2373–2390

    Article  CAS  Google Scholar 

  36. Omura S, Inokoshi J, Uchida R, Shiomi K, Masuma R, Kawakubo R, Tanaka H, Iwai Y, Kosemura S, Yamamura S (1996) Andrastins A-C, new protein farnesyltransferase inhibitors produced by Penicillium sp. FO-3929. I. Producing strain, fermentation, isolation, and biological. Tetrahedron Lett 37:1265–1268

    Article  Google Scholar 

  37. Vilella D, Sánchez M, Platas G, Salazar O, Genilloud O, Royo I, Cascales C, Martín I, Díez T, Silverman KC, Lingham RB, Singh SB, Jayasuriya H, Peláez F (2000) Inhibitors of farnesylation of Ras from a microbial natural products screening program. J Ind Microbiol Biotechnol 25:315–327

    Article  CAS  Google Scholar 

  38. Matsuda Y, Abe I (2014) Meroterpenoids. In: Martín JF, García-Estrada C, Zeilinger S (eds) Biosynthesis and molecular genetics of fungal secondary metabolites. Springer, New York

    Google Scholar 

  39. Uchida R, Shiomi K, Inokoshi J, Sunazuka T, Tanaka H, Iwai Y, Takayanagi H, Omura S (1996) Andrastins A-C, new protein farnesyltransferase inhibitors produced by Penicillium sp. FO-3929. II. Structure elucidation and biosynthesis. J Antibiot (Tokyo) 49:418–424

    Article  CAS  Google Scholar 

  40. Uchida R, Shiomi K, Inokoshi J, Tanakaf H, Iwai Y, Omura S (1996) Andrastin D, Novel protein farnesyltransferase inhibitor produced by Penicillium sp. FO-3929. J Antibiot (Tokyo) 49:1278–1280

    Article  CAS  Google Scholar 

  41. Nicoletti R, Ciavatta L, Buommino E, Tufano MA (2008) Antitumor extrolites produced by Penicillium species. Int J Biomed Pharm Sci 2:1

    Google Scholar 

  42. Matsuda Y, Awakawa T, Abe I (2013) Reconstituted biosynthesis of fungal meroterpenoid andrastin A. Tetrahedron 69:8199e8204

    Article  Google Scholar 

  43. Matsuda Y, Awakawa T, Itoh T, Wakimoto T, Kushiro T, Fujii I, Ebizuka Y, Abe I (2012) Terretonin biosynthesis requires methylation as essential step for cyclization. Chembiochem 13:1738–17341

    Article  CAS  Google Scholar 

  44. Artigot MP, Loiseau N, Laffitte J, Mas-Reguieg L, Bartman CD, Doerfler DL, Bird BA, Remaley AT, Peace JN, Campbell IM (1981) Mycophenolic acid production by Penicillium brevicompactum on solid media. Appl Environ Microbiol 41:729–736

    Google Scholar 

  45. Bentley R (2000) Mycophenolic acid: a one hundred year odyssey from antibiotic to immunosuppressant. Chem Rev 100:3801–3826

    Article  CAS  Google Scholar 

  46. Meier-Kriesche HU, Li S, Gruessner RW, Fung JJ, Bustami RT, Barr ML, Leichtman AB (2006) Immunosuppression: evolution in practice and trends, 1994–2004. Am J Transplant 6:1111–1131

    Article  CAS  Google Scholar 

  47. Borroto-Esoda K, Myrick F, Feng J, Jeffrey J, Furman P (2004) In vitro combination of amdoxovir and the inosine monophosphate dehydrogenase inhibitors mycophenolic acid and ribavirin demonstrates potent activity against wild-type and drug-resistant variants of human immunodeficiency virus type 1. Antimicrob Ag Chemother 48:4387–4394

    Article  CAS  Google Scholar 

  48. Diamond MS, Zachariah M, Harris E (2002) Mycophenolic acid inhibits dengue virus infection by preventing replication of viral RNA. Virology 304:211–221

    Article  CAS  Google Scholar 

  49. Nicoletti R, De Stefano M, De Stefano S, Trincone A, Marziano F (2004) Identification of fungitoxic metabolites produced by some Penicillium isolates antagonistic to Rhizoctonia solani. Mycopathologia 158:465–474

    Article  CAS  Google Scholar 

  50. Tressler RJ, Garvin LJ, Slate DL (1994) Anti‐tumor activity of mycophenolate mofetil against human and mouse tumors in vivo. Int J Cancer 57:568–573

    Article  CAS  Google Scholar 

  51. Epinette WW, Parker CM, Jones EL, Greist MC (1987) Mycophenolic acid for psoriasis. A review of pharmacology, long-term efficacy, and safety. J Am Acad Dermatol 17:962–971

    Article  CAS  Google Scholar 

  52. Nulton CP, Naworal JD, Campbell IM, Grotzinger EW (1976) A combined radiogas chromatograph/mass spectrometer detects intermediates in mycophenolic acid biosynthesis. Anal Biochem 75:219–233

    Article  CAS  Google Scholar 

  53. Regueira TB, Kildgaard KR, Hansen BG, Mortensen UH, Hertweck C, Nielsen J (2011) Molecular basis for mycophenolic acid biosynthesis in Penicillium brevicompactum. Appl Environ Microbiol 77:3035–3043

    Article  CAS  Google Scholar 

  54. Zhang W, Cao S, Qiu L, Qi F, Li Z, Yang Y, Huang S, Bai F, Liu C, Wan X, Li S (2015) Functional characterization of MpaG′, the O-methyltransferase involved in the biosynthesis of mycophenolic acid. Chembiochem 16:565–569

    Article  CAS  Google Scholar 

  55. Hansen BG, Salomonsen B, Nielsen MT, Nielsen JB, Hansen NB, Nielsen K, Regueira TB, Nielsen J, Patil KR, Mortensen UH (2011) Versatile enzyme expression and characterization system for Aspergillus nidulans with the Penicillium brevicompactum polyketide synthetase gene from the mycophenolic acid gene cluster as a test case. Appl Environ Microbiol 77:3044–3051

    Article  CAS  Google Scholar 

  56. Hansen BG, Genee HJ, Kaas CS, Nielsen JB, Regueira TB, Mortensen UH, Frisvad JC, Patil KR (2011) A new class of IMP dehydrogenase with a role in self-resistance of mycophenolic acid producing fungi. BMC Microbiol 11:202

    Article  CAS  Google Scholar 

  57. Rigbers O, Lin S-M (2008) Ergot alkaloid biosynthesis in Aspergillus fumigatus overproduction and biochemical characterization of a 4-dimethylallyltryptophan N-methyltransferase. J Biol Chem 283:26859–26868

    Article  CAS  Google Scholar 

  58. Tudzynski P, Neubauer L (2014) Ergot Alkaloids. In: Martín JF, García-Estrada C, Zeilinger S (eds) Biosynthesis and molecular genetics of fungal secondary metabolites. Springer, New York

    Google Scholar 

  59. Lorenz N, Haarmann T, Paqoutová S, Jung M, Tudzynski P (2009) The ergot alkaloid gene cluster: functional analyses and evolutionary aspects. Phytochemistry 70:1822–1832

    Article  CAS  Google Scholar 

  60. Panaccione DG (2010) Ergot alkaloids. In: Hofrichter M (ed) The mycota. Springer, Berlin

    Google Scholar 

  61. Lorenz N, Olnovská J, Kulc M, Tudzynski P (2010) Alkaloid cluster gene ccsA of the ergot fungus Claviceps purpurea encodes chanoclavine I synthase, a Xavin adenine dinucleotide-containing oxidoreductase mediating the transformation of N-methyl-dimethylallyltryptophan to chanoclavine I. Appl Environ Microbiol 76:1822–1830

    Article  CAS  Google Scholar 

  62. Goetz KE, Coyle CM, Cheng JZ, O’Connor SE, Panaccione DG (2011) Ergot cluster-encoded catalase is required for synthesis of chanoclavine-I in Aspergillus fumigatus. Curr Genet 57:201–211

    Article  CAS  Google Scholar 

  63. Wallwey C, Matuschek M, Li S (2010) Ergot alkaloid biosynthesis in Aspergillus fumigatus: conversion of chanoclavine-I to chanoclavine-I aldehyde catalyzed by a short-chain alcohol dehydrogenase FgaDH. Arch Microbiol 192:127–134

    Article  CAS  Google Scholar 

  64. Wallwey C, Matuschek M, Xie X, Li S (2010) Ergot alkaloid biosynthesis in Aspergillus fumigatus: conversion of chanoclavine-I aldehyde to festuclavine by the festuclavine synthase FgaFS in the presence of the old yellow enzyme FgaOx3. Org Biomol Chem 8:3500–3508

    Article  CAS  Google Scholar 

  65. Cheng JZ, Coyle CM, Panaccione DG, O’Connor SE (2010) Controlling a structural branch point in ergot alkaloid biosynthesis. J Am Chem Soc 132:12835–12837

    Article  CAS  Google Scholar 

  66. Matuschek M, Wallwey C, Xie X, Li SM (2011) New insights into ergot alkaloid biosynthesis in Claviceps purpurea: an agroclavine synthase EasG catalyses, via a non-enzymatic adduct with reduced glutathione, the conversion of chanoclavine-I aldehyde to agroclavine. Org Biomol Chem 9:4328–4335

    Article  CAS  Google Scholar 

  67. Sorensen JL, Nielsen KF, Sondergaard TE (2012) Redirection of pigment biosynthesis to isocoumarins in Fusarium. Fungal Genet Biol 49:613–618

    Article  Google Scholar 

  68. Puel O, Galtier P, Oswald IP (2010) Biosynthesis and toxicological effects of patulin. Toxins 2:613–631

    Article  CAS  Google Scholar 

  69. Houbraken J, Samson RA, Frisvad JC (2006) Byssochlamys: significance of heat resistance and mycotoxin production. Adv Exp Med Biol 571:211–224

    Article  CAS  Google Scholar 

  70. Varga J, Due M, Frisvad J, Samson RA (2007) Taxonomic revision of Aspergillus section Clavati based on molecular, morphological and physiological data. Stud Mycol 59:89–106

    Article  CAS  Google Scholar 

  71. McKinley ER, Carlton WW (1991) Patulin. In: Salunkhe DK, Sharma RP (eds) Mycotoxins and phytoalexins. CRC Press, Boca Raton

    Google Scholar 

  72. Beck J, Ripka S, Siegner A, Schiltz E, Schweizer E (1990) The multifunctional 6-methylsalicylic acid synthase gene of Penicillium patulum. Its gene structure relative to that of other polyketide synthases. Eur J Biochem 192:487–498

    Article  CAS  Google Scholar 

  73. Wang IK, Reeves C, Gaucher GM (1991) Isolation and sequencing of a genomic DNA clone containing the 3′terminus of the 6-methylsalicylic acid polyketide synthetase gene of Penicillium urticae. Can J Microbiol 37:86–95

    Article  CAS  Google Scholar 

  74. Dombrink-Kurtzman MA (2007) The sequence of the isoepoxydon dehydrogenase gene of the patulin biosynthetic pathway in Penicillium species. Antonie Van Leeuwenhoek 91:179–189

    Article  CAS  Google Scholar 

  75. Artigot MP, Loiseau N, Laffitte J, Mas-Reguieg L, Tadrist S, Oswald IP, Puel O (2009) Molecular cloning and functional characterization of two CYP619 cytochrome P450s involved in biosynthesis of patulin in Aspergillus clavatus. Microbiology 155:1738–1747

    Article  CAS  Google Scholar 

  76. Abbas A, Dobson ADW (2011) Yeasts and molds: Penicillium camemberti. In: Funquay JW (ed) Encyclopedia of dairy sciences. Academic, San Diego

    Google Scholar 

  77. Chang PK, Horn BW, Dorner JW (2009) Clustered genes involved in cyclopiazonic acid production are next to the aflatoxin biosynthesis gene cluster in Aspergillus flavus. Fungal Genet Biol 46:176–182

    Article  CAS  Google Scholar 

  78. Liu X, Walsh CT (2009) Cyclopiazonic acid biosynthesis in Aspergillus sp.: characterization of a reductase-like R* domain in cyclopiazonate synthetase that forms and releases cyclo-acetoacetyl-L-tryptophan. Biochemistry 48:8746–8757

    Article  CAS  Google Scholar 

  79. Liu X, Walsh CT (2009) Characterization of cyclo-acetoacetyl-L-tryptophan dimethylallyltransferase in cyclopiazonic acid biosynthesis: substrate promiscuity and site directed mutagenesis studies. Biochemistry 48:11032–11044

    Article  CAS  Google Scholar 

  80. Tokuoka M, Seshime Y, Fujii I, Kitamoto K, Takahashi T, Koyama Y (2008) Identification of a novel polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) gene required for the biosynthesis of cyclopiazonic acid in Aspergillus oryzae. Fungal Genet Biol 45:1608–1615

    Article  CAS  Google Scholar 

  81. Holzapfel CW, Wilkins DC (1971) On the biosynthesis of cyclopiazonic acid. Phitochem 10:351–358

    Article  CAS  Google Scholar 

  82. Shinohara Y, Tokuoka M, Koyama Y (2011) Functional analysis of the cyclopiazonic acid biosynthesis gene cluster in Aspergillus oryzae RIB 40. Biosci Biotechnol Biochem 75:2249–2252

    Article  CAS  Google Scholar 

  83. Kato N, Tokuoka M, Shinohara Y, Kawatani M, Uramoto M, Seshime Y, Fujii I, Kitamoto K, Takahashi T, Takahashi S, Koyama Y, Osada H (2011) Genetic safeguard against mycotoxin cyclopiazonic acid production in Aspergillus oryzae. Chembiochem 12:1376–1382

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan F. Martín .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Martín, J.F., Liras, P. (2017). Secondary Metabolites in Cheese Fungi. In: Mérillon, JM., Ramawat, K. (eds) Fungal Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-25001-4_37

Download citation

Publish with us

Policies and ethics