Skip to main content

Lanostanoids from Fungi as Potential Medicinal Agents

  • Reference work entry
  • First Online:
Fungal Metabolites

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Lanostanes are a group of tetracyclic triterpenoids derived from lanosterol. They have relevant biological and pharmacological properties, such as cytotoxicity, immunomodulation, and anti-inflammation. Some of them also have interesting effects on metabolism and anti-infectious properties. This review will compile chemical data, biological effects, and mechanisms on the most relevant lanostanoids isolated from fungi, such as those from Ganoderma lucidum, Poria cocos, Laetiporus sulphureus, Inonotus obliquus, Antrodia camphorata, Daedalea dickinsii, and other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ABCB:

ATP-binding cassette

AIF:

Apoptosis-inducing factor

AKT:

Protein kinase B

AMPK:

AMP-activated kinase

C/EBPα:

CCAAT-enhancer-binding protein-α

CCAAT:

Cytosine-cytosine-adenosine-adenosine-thymidine

cdk4:

Cyclin D kinase 4

COX:

Cyclooxygenase

CYP3A4:

Cytochrome P450 3A4

DBD:

DNA-binding domain

DMBA:

7,12-Dimethylbenz[a]anthracene

EBV-EA:

Epstein-Barr virus early antigen

ERK Erk:

Extracellular-regulated kinase

FXR:

Farnesoid X receptor

GLUT4:

Glucose transporter type 4

GPDH:

Glycerol-3-phosphate dehydrogenase

HIV:

Human immunodeficiency virus

HO-1:

Heme-oxygenase-1

hPXR:

Human pregnane X receptor

IC50 :

Inhibitory concentration 50

IFN-γ:

Interferon-γ

IL:

Interleukin

iNOS:

Inducible nitric oxide synthase

IRS-1:

Insulin receptor substrate-1

IκBα:

Inhibitor of κBα

JAK:

Janus kinase

JNK:

c-Jun N-terminal kinase

LBD:

Ligand-binding domain

LPS:

Lipopolysaccharide

MDD:

Mean day of death

MIC:

Minimum inhibitory concentration

MMP-9:

Matrix metalloproteinase-9

NF-κB:

Nuclear factor-κB

NK:

Natural killer

NO:

Nitric oxide

Nrf2:

Nuclear factor (erythroid-derived 2)-like 2

PI3K:

Phosphatidylinositol-4,5-bisphosphate 3-kinase

PLA2 :

Phospholipase A2

PARP:

Poly(ADP-ribose)-polymerase

PPAR-γ:

Peroxisome proliferator-activated receptor-γ

RXR:

Retinoid X receptor

SREBP-1c:

Sterol regulatory element-binding protein-1c

STAT3:

Signal transducer and activator of transcription 3

T2DM:

Type 2 diabetes mellitus

TNFα:

Tumor necrosis factor-α

TPA:

12-O-Tetradecanoylphorbol-13-acetate

uPA:

Urokinase-type plasminogen activator

References

  1. Coates RM (1976) Biogenetic-type rearrangements of terpenes. In: Gerz W, Grisebach H, Kirby GW (eds) Progress in the chemistry of organic natural products, vol 33. Springer, Wien, pp 178–183

    Google Scholar 

  2. Giner-Larza EM, Máñez S, Recio MC, Giner RM, Ríos JL (2000) A review on the pharmacology of lanostanes and related tetracyclic triterpenes. In: Mohan RM (ed) Research advances in phytochemistry. Global Research Net Work, Tivandrum (India), pp 65–82

    Google Scholar 

  3. Ríos JL, Recio MC, Máñez S, Giner RM (2000) Natural triterpenoids as anti-inflammatory agents. In: Atta-ur-Rahman S (ed) Studies in natural products chemistry, vol 22, Part C. Elsevier, Amsterdam, pp 93–143

    Google Scholar 

  4. Hiller K (1987) New results on the structure and biological activity of triterpenoids saponins. In: Hostettmann K, Lea PJ (eds) Biologically active natural products. Oxford Science Publisher, Oxford, pp 167–184

    Google Scholar 

  5. Hostettmann K, Hostettman M, Marston A (1991) Saponins. In: Dey PM, Harbone JB (eds) Methods in plant biochemistry. Academic, London, pp 435–471

    Google Scholar 

  6. Boar R (1984) Triterpenoids. Nat Prod Rep 1:53–65

    Article  CAS  Google Scholar 

  7. Connolly JD, Hill RA (1985) Triterpenoids. Nat Prod Rep 2:1–17

    Article  CAS  Google Scholar 

  8. Connolly JD, Hill RA (1986) Triterpenoids. Nat Prod Rep 3:420–442

    Article  Google Scholar 

  9. Connolly JD, Hill RA (1989) Triterpenoids. Nat Prod Rep 6:475–501

    Article  CAS  Google Scholar 

  10. Connolly JD, Hill RA (1991) Triterpenoids. In: Dey PM, Harbone JB (eds) Methods in plant biochemistry. Academic, London, pp 331–359

    Google Scholar 

  11. Connolly JD, Hill RA, Ngadjui BT (1994) Triterpenoids. Nat Prod Rep 11:91–117

    Article  CAS  Google Scholar 

  12. Connolly JD, Hill RA, Ngadjui BT (1994) Triterpenoids. Nat Prod Rep 11:476–492

    Article  Google Scholar 

  13. Connolly JD, Hill RA (1995) Triterpenoids. Nat Prod Rep 12:475–501

    Article  Google Scholar 

  14. Connolly JD, Hill RA (1996) Triterpenoids. Nat Prod Rep 13:151–169

    Article  CAS  Google Scholar 

  15. Connolly JD, Hill RA (1997) Triterpenoids. Nat Prod Rep 14:661–679

    Article  CAS  Google Scholar 

  16. Connolly JD, Hill RA (2000) Triterpenoids. Nat Prod Rep 17:463–482

    Article  CAS  Google Scholar 

  17. Connolly JD, Hill RA (2001) Triterpenoids. Nat Prod Rep 18:131–147

    Article  CAS  Google Scholar 

  18. Connolly JD, Hill RA (2001) Triterpenoids. Nat Prod Rep 18:560–578

    Article  CAS  Google Scholar 

  19. Connolly JD, Hill RA (2002) Triterpenoids. Nat Prod Rep 19:494–513

    Article  CAS  Google Scholar 

  20. Connolly JD, Hill RA (2003) Triterpenoids. Nat Prod Rep 20:640–659

    Article  CAS  Google Scholar 

  21. Connolly JD, Hill RA (2005) Triterpenoids. Nat Prod Rep 22:230–248

    Article  CAS  Google Scholar 

  22. Connolly JD, Hill RA (2005) Triterpenoids. Nat Prod Rep 22:487–503

    Article  CAS  Google Scholar 

  23. Connolly JD, Hill RA (2007) Triterpenoids. Nat Prod Rep 24:465–486

    Article  CAS  Google Scholar 

  24. Connolly JD, Hill RA (2008) Triterpenoids. Nat Prod Rep 25:794–830

    Article  CAS  Google Scholar 

  25. Connolly JD, Hill RA (2010) Triterpenoids. Nat Prod Rep 27:79–132

    Article  CAS  Google Scholar 

  26. Hill RA, Connolly JD (2011) Triterpenoids. Nat Prod Rep 28:1087–1117

    Article  CAS  Google Scholar 

  27. Hill RA, Connolly JD (2012) Triterpenoids. Nat Prod Rep 29:780–818

    Article  CAS  Google Scholar 

  28. Hill RA, Connolly JD (2013) Triterpenoids. Nat Prod Rep 30:1028–1065

    Article  CAS  Google Scholar 

  29. Hill RA, Connolly JD (2015) Triterpenoids. Nat Prod Rep 32:273–372

    Article  CAS  Google Scholar 

  30. Ríos JL, Andújar I, Recio MC, Giner RM (2012) Lanostanoids from fungi: a group of potential anticancer compounds. J Nat Prod 75:2016–2044

    Article  CAS  Google Scholar 

  31. Popović V, Živković J, Davidović S, Stevanović M, Stojković D (2013) Mycotherapy of cancer: an update on cytotoxic and antitumor activities of mushrooms, bioactive principles and molecular mechanisms of their action. Curr Top Med Chem 13:2791–2806

    Article  CAS  Google Scholar 

  32. Liu XT, Winkler AL, Schwan WR, Volk TJ, Rott MA, Monte A (2010) Antibacterial compounds from mushrooms I: a lanostane-type triterpene and prenylphenol derivatives from Jahnoporus hirtus and Albatrellus flettii and their activities against Bacillus cereus and Enterococcus faecalis. Planta Med 76:182–185

    Article  CAS  Google Scholar 

  33. Huang HC, Liaw CC, Yang HL, Hseu YC, Kuo HT, Tsai YC, Chien SC, Amagaya S, Chen YC, Kuo YH (2012) Lanostane triterpenoids and sterols from Antrodia camphorata. Phytochemistry 84:177–183

    Article  CAS  Google Scholar 

  34. Majid E, Male KB, Tzeng YM, Omamogho JO, Glennon JD, Luong JH (2009) Cyclodextrin-modified capillary electrophoresis for achiral and chiral separation of ergostane and lanostane compounds extracted from the fruiting body of Antrodia camphorata. Electrophoresis 30:1967–1975

    Article  CAS  Google Scholar 

  35. Yeh CT, Rao YK, Yao CJ, Yeh CF, Li CH, Chuang SE, Luong JH, Lai GM, Tzeng YM (2009) Cytotoxic triterpenes from Antrodia camphorata and their mode of action in HT-29 human colon cancer cells. Cancer Lett 285:73–79

    Article  CAS  Google Scholar 

  36. Hsu FL, Chou CJ, Chang YC, Chang TT, Lu MK (2006) Promotion of hyphal growth and underlying chemical changes in Antrodia camphorata by host factors from Cinnamomum camphora. Int J Food Microbiol 106:32–38

    Article  CAS  Google Scholar 

  37. Shen YC, Chou CJ, Wang YH, Chen CF, Chou YC, Lu MK (2004) Anti-inflammatory activity of the extracts from mycelia of Antrodia camphorata cultured with water-soluble fractions from five different Cinnamomum species. FEMS Microbiol Lett 231:137–143

    Google Scholar 

  38. Lu MY, Fan WL, Wang WF, Chen T, Tang YC, Chu FH, Chang TT, Wang SY, Li MY, Chen YH, Lin ZS, Yang KJ, Chen SM, Teng YC, Lin YL, Shaw JF, Wang TF, Li WH (2014) Genomic and transcriptomic analyses of the medicinal fungus Antrodia cinnamomea for its metabolite biosynthesis and sexual development. Proc Natl Acad Sci U S A 111:E4743–E4752

    Article  CAS  Google Scholar 

  39. Xie LR, Li DY, Wang PL, Hua HM, Wu X, Li ZL (2013) A new 3, 4-seco-lanostane triterpenoid from a marine-derived fungus Ascotricha sp. ZJ-M-5. Yao Xue Xue Bao 48:89–93, PMID:23600147

    CAS  Google Scholar 

  40. Leet JE, Huang S, Klohr SE, McBrien KD (1996) Ascosteroside, a new antifungal agent from Ascotricha amphitricha. J Antibiot (Tokyo) 49:553–559

    Article  CAS  Google Scholar 

  41. Gorman JA, Chang LP, Clark J, Gustavson DR, Lam KS, Mamber SW, Pirnik D, Ricca C, Fernandes PB, O'Sullivan J (1996) Ascosteroside, a new antifungal agent from Ascotricha amphitricha. I. Taxonomy, fermentation and biological activities. J Antibiot (Tokyo) 49:547–552

    Article  CAS  Google Scholar 

  42. Lai TK, Biswas G, Chatterjee S, Dutta A, Pal C, Banerji J, Bhuvanesh N, Reibenspies JH, Acharya K (2012) Leishmanicidal and anticandidal activity of constituents of Indian edible mushroom Astraeus hygrometricus. Chem Biodivers 9:1517–1524

    Article  CAS  Google Scholar 

  43. Arpha K, Phosri C, Suwannasai N, Mongkolthanaruk W, Sodngam S (2012) Astraodoric acids A-D: new lanostane triterpenes from edible mushroom Astraeus odoratus and their anti-Mycobacterium tuberculosis H37Ra and cytotoxic activity. J Agric Food Chem 60:9834–9841

    Article  CAS  Google Scholar 

  44. Stanikunaite R, Radwan MM, Trappe JM, Fronczek F, Ross SA (2008) Lanostane-type triterpenes from the mushroom Astraeus pteridis with antituberculosis activity. J Nat Prod 71:2077–2079

    Article  CAS  Google Scholar 

  45. Cabrera GM, Vellasco AP, Levy LM, Eberlin MN (2007) Characterisation of fungal lanostane-type triterpene acids by electrospray ionisation mass spectrometry. Phytochem Anal 18:489–495

    Article  CAS  Google Scholar 

  46. Yoshikawa K, Kouso K, Takahashi J, Matsuda A, Okazoe M, Umeyama A, Arihara S (2005) Cytotoxic constituents of the fruit body of Daedalea dickisii. J Nat Prod 68:911–914

    Article  CAS  Google Scholar 

  47. Yoshikawa K, Nishimura N, Bando S, Arihara S, Matsumura E, Katayama S (2002) New lanostanoids, elfvingic acids A-H, from the fruit body of Elfvingia applanata. J Nat Prod 65:548–552

    Article  CAS  Google Scholar 

  48. Feng W, Yang J, Xu X, Liu Q (2010) Quantitative determination of lanostane triterpenes in Fomes officinalis and their fragmentation study by HPLC-ESI. Phytochem Anal 21:531–538

    Article  CAS  Google Scholar 

  49. Wu X, Yang J, Zhou L, Dong Y (2004) New lanostane-type triterpenes from Fomes officinalis. Chem Pharm Bull (Tokyo) 52:1375–1377

    Article  CAS  Google Scholar 

  50. Wu X, Yang JS, Yan M (2009) Four new triterpenes from fungus of Fomes officinalis. Chem Pharm Bull (Tokyo) 57:195–197

    Article  CAS  Google Scholar 

  51. Bhattarai G, Lee YH, Lee NH, Lee IK, Yun BS, Hwang PH, Yi HK (2012) Fomitoside-K from Fomitopsis nigra induces apoptosis of human oral squamous cell carcinomas (YD-10B) via mitochondrial signaling pathway. Biol Pharm Bull 35:1711–1719

    Article  CAS  Google Scholar 

  52. Liu XT, Winkler AL, Schwan WR, Volk TJ, Rott M, Monte A (2010) Antibacterial compounds from mushrooms II: lanostane triterpenoids and an ergostane steroid with activity against Bacillus cereus isolated from Fomitopsis pinicola. Planta Med 76:464–466

    Article  CAS  Google Scholar 

  53. Petrova A, Popov S, Gjosheva M, Bankova V (2007) A new triterpenic alcohol from Fomitopsis pinicola. Nat Prod Res 21:401–405

    Article  CAS  Google Scholar 

  54. Yoshikawa K, Inoue M, Matsumoto Y, Sakakibara C, Miyataka H, Matsumoto H, Arihara S (2005) Lanostane triterpenoids and triterpene glycosides from the fruit body of Fomitopsis pinicola and their inhibitory activity against COX-1 and COX-2. J Nat Prod 68:69–73

    Google Scholar 

  55. Popova M, Trusheva B, Gyosheva M, Tsvetkova I, Bankova V (2009) Antibacterial triterpenes from the threatened wood-decay fungus Fomitopsis rosea. Fitoterapia 80:263–266

    Article  CAS  Google Scholar 

  56. Quang DN, Arakawa Y, Hashimoto T, Asakawa Y (2005) Lanostane triterpenoids from the inedible mushroom Fomitopsis spraguei. Phytochemistry 66:1656–1661

    Article  CAS  Google Scholar 

  57. He J, Feng XZ, Lu Y, Zhao B (2001) Three new triterpenoids from Fuscoporia obliqua. J Asian Nat Prod Res 3:55–61

    Article  CAS  Google Scholar 

  58. Wang F, Liu JK (2008) Highly oxygenated lanostane triterpenoids from the fungus Ganoderma applanatum. Chem Pharm Bull (Tokyo) 56:1035–1037

    Article  CAS  Google Scholar 

  59. de Silva ED, van der Sar SA, Santha RG, Wijesundera RL, Cole AL, Blunt JW, Munro MH (2006) Lanostane triterpenoids from the Sri Lankan basidiomycete Ganoderma applanatum. J Nat Prod 69:1245–1248

    Article  CAS  Google Scholar 

  60. Shim SH, Ryu J, Kim JS, Kang SS, Xu Y, Jung SH, Lee YS, Lee S, Shin KH (2004) New lanostane-type triterpenoids from Ganoderma applanatum. J Nat Prod 67:1110–1113

    Article  CAS  Google Scholar 

  61. El Dine RS, El Halawany AM, Nakamura N, Ma CM, Hattori M (2008) New lanostane triterpene lactones from the Vietnamese mushroom Ganoderma colossum (Fr.) C.F. Baker. Chem Pharm Bull (Tokyo) 56:642–646

    Article  Google Scholar 

  62. El Dine RS, El Halawany AM, Ma CM, Hattori M (2008) Anti-HIV-1 protease activity of lanostane triterpenes from the Vietnamese mushroom Ganoderma colossum. J Nat Prod 71:1022–1026

    Article  CAS  Google Scholar 

  63. González AG, León F, Rivera A, Padrón JI, González-Plata J, Zuluaga JC, Quintana J, Estévez F, Bermejo J (2002) New lanostanoids from the fungus Ganoderma concinna. J Nat Prod 65:417–421

    Article  CAS  Google Scholar 

  64. Choi S, Nguyen VT, Tae N, Lee S, Ryoo S, Min BS, Lee JH (2014) Anti-inflammatory and heme oxygenase-1 inducing activities of lanostane triterpenes isolated from mushroom Ganoderma lucidum in RAW264.7 cells. Toxicol Appl Pharmacol 280:434–442

    Article  CAS  Google Scholar 

  65. Liu DZ, Zhu YQ, Li XF, Shan WG, Gao PF (2014) New triterpenoids from the fruiting bodies of Ganoderma lucidum and their bioactivities. Chem Biodivers 11:982–986

    Article  CAS  Google Scholar 

  66. Tung NT, Cuong TD, Hung TM, Lee JH, Woo MH, Choi JS, Kim J, Ryu SH, Min BS (2013) Inhibitory effect on NO production of triterpenes from the fruiting bodies of Ganoderma lucidum. Bioorg Med Chem Lett 23:1428–1432

    Article  CAS  Google Scholar 

  67. Fatmawati S, Shimizu K, Kondo R (2010) Ganoderic acid Df, a new triterpenoid with aldose reductase inhibitory activity from the fruiting body of Ganoderma lucidum. Fitoterapia 81:1033–1036

    Article  CAS  Google Scholar 

  68. Fatmawati S, Shimizu K, Kondo R (2011) Structure-activity relationships of ganoderma acids from Ganoderma lucidum as aldose reductase inhibitors. Bioorg Med Chem Lett 21(24):7295–7297

    Article  CAS  Google Scholar 

  69. Grienke U, Mihály-Bison J, Schuster D, Afonyushkin T, Binder M, Guan SH, Cheng CR, Wolber G, Stuppner H, Guo DA, Bochkov VN, Rollinger JM (2011) Pharmacophore-based discovery of FXR-agonists. Part II: identification of bioactive triterpenes from Ganoderma lucidum. Bioorg Med Chem 19:6779–6791

    Article  CAS  Google Scholar 

  70. Lee I, Kim J, Ryoo I, Kim Y, Choo S, Yoo I, Min B, Na M, Hattori M, Bae K (2010) Lanostane triterpenes from Ganoderma lucidum suppress the adipogenesis in 3T3-L1 cells through down-regulation of SREBP-1c. Bioorg Med Chem Lett 20:5577–5581

    Article  CAS  Google Scholar 

  71. Lee I, Kim H, Youn U, Kim J, Min B, Jung H, Na M, Hattori M, Bae K (2010) Effect of lanostane triterpenes from the fruiting bodies of Ganoderma lucidum on adipocyte differentiation in 3T3-L1 cells. Planta Med 76:1558–1563

    Article  CAS  Google Scholar 

  72. Lee I, Seo J, Kim J, Kim H, Youn U, Lee J, Jung H, Na M, Hattori M, Min B, Bae K (2010) Lanostane triterpenes from the fruiting bodies of Ganoderma lucidum and their inhibitory effects on adipocyte differentiation in 3T3-L1 Cells. J Nat Prod 73:172–176

    Article  CAS  Google Scholar 

  73. Lee I, Ahn B, Choi J, Hattori M, Min B, Bae K (2011) Selective cholinesterase inhibition by lanostane triterpenes from fruiting bodies of Ganoderma lucidum. Bioorg Med Chem Lett 21:6603–6607

    Article  CAS  Google Scholar 

  74. Xu JW, Zhao W, Zhong JJ (2010) Biotechnological production and application of ganoderic acids. Appl Microbiol Biotechnol 87:457–466

    Article  CAS  Google Scholar 

  75. Jiang J, Grieb B, Thyagarajan A, Sliva D (2008) Ganoderic acids suppress growth and invasive behavior of breast cancer cells by modulating AP-1 and NF-κB signaling. Int J Mol Med 21:577–584

    CAS  Google Scholar 

  76. Wang G, Zhao J, Liu J, Huang Y, Zhong JJ, Tang W (2007) Enhancement of IL-2 and IFN-γ expression and NK cells activity involved in the anti-tumor effect of ganoderic acid Me in vivo. Int Immunopharmacol 7:864–870

    Article  CAS  Google Scholar 

  77. Akihisa T, Tagata M, Ukiya M, Tokuda H, Suzuki T, Kimura Y (2005) Oxygenated lanostane-type triterpenoids from the fungus Ganoderma lucidum. J Nat Prod 68:559–563

    Article  CAS  Google Scholar 

  78. Akihisa T, Nakamura Y, Tagata M, Tokuda H, Yasukawa K, Uchiyama E, Suzuki T, Kimura Y (2007) Anti-inflammatory and anti-tumor-promoting effects of triterpene acids and sterols from the fungus Ganoderma lucidum. Chem Biodivers 4:224–231

    Article  CAS  Google Scholar 

  79. Tang W, Liu JW, Zhao WM, Wei DZ, Zhong JJ (2006) Ganoderic acid T from Ganoderma lucidum mycelia induces mitochondria mediated apoptosis in lung cancer cells. Life Sci 80:205–211

    Article  CAS  Google Scholar 

  80. Campos Ziegenbein F, Hanssen HP, König WA (2006) Secondary metabolites from Ganoderma lucidum and Spongiporus leucomallellus. Phytochemistry 67:202–211

    Article  CAS  Google Scholar 

  81. Luo J, Zhao YY, Li ZB (2002) A new lanostane-type triterpene from the fruiting bodies of Ganoderma lucidum. J Asian Nat Prod Res 4:129–134

    Article  CAS  Google Scholar 

  82. Min BS, Nakamura N, Miyashiro H, Bae KW, Hattori M (1998) Triterpenes from the spores of Ganoderma lucidum and their inhibitory activity against HIV-1 protease. Chem Pharm Bull (Tokyo) 46:1607–1612

    Article  CAS  Google Scholar 

  83. Min BS, Gao JJ, Nakamura N, Hattori M (2000) Triterpenes from the spores of Ganoderma lucidum and their cytotoxicity against meth-A and LLC tumor cells. Chem Pharm Bull (Tokyo) 48:1026–1033

    Article  CAS  Google Scholar 

  84. Min BS, Gao JJ, Hattori M, Lee HK, Kim YH (2001) Anticomplement activity of terpenoids from the spores of Ganoderma lucidum. Planta Med 67:811–814

    Article  CAS  Google Scholar 

  85. Ma QY, Luo Y, Huang SZ, Guo ZK, Dai HF, Zhao YX (2013) Lanostane triterpenoids with cytotoxic activities from the fruiting bodies of Ganoderma hainanense. J Asian Nat Prod Res 15:1214–1219

    Google Scholar 

  86. Fatmawati S, Kondo R, Shimizu K (2013) Structure-activity relationships of lanostane-type triterpenoids from Ganoderma lingzhi as α-glucosidase inhibitors. Bioorg Med Chem Lett 23:5900–5903

    Article  CAS  Google Scholar 

  87. Isaka M, Chinthanom P, Kongthong S, Srichomthong K, Choeyklin R (2013) Lanostane triterpenes from cultures of the Basidiomycete Ganoderma orbiforme BCC 22324. Phytochemistry 87:133–139

    Article  CAS  Google Scholar 

  88. Niu XM, Li SH, Xiao WL, Sun HD, Che CT (2007) Two new lanostanoids from Ganoderma resinaceum. J Asian Nat Prod Res 9:659–664

    Article  CAS  Google Scholar 

  89. Liu JQ, Wang CF, Li Y, Luo HR, Qiu MH (2012) Isolation and bioactivity evaluation of terpenoids from the medicinal fungus Ganoderma sinense. Planta Med 78:368–376

    Article  CAS  Google Scholar 

  90. Sato N, Zhang Q, Ma CM, Hattori M (2009) Anti-human immunodeficiency virus-1 protease activity of new lanostane-type triterpenoids from Ganoderma sinense. Chem Pharm Bull (Tokyo) 57:1076–1080

    Article  CAS  Google Scholar 

  91. Sato N, Ma CM, Komatsu K, Hattori M (2009) Triterpene-farnesyl hydroquinone conjugates from Ganoderma sinense. J Nat Prod 72:958–961

    Article  CAS  Google Scholar 

  92. Qiao Y, Zhang XM, Qiu MH (2007) Two novel lanostane triterpenoids from Ganoderma sinense. Molecules 12:2038–2046

    Article  CAS  Google Scholar 

  93. Liu LY, Chen H, Liu C, Wang HQ, Kang J, Li Y, Chen RY (2014) Triterpenoids of Ganoderma theaecolum and their hepatoprotective activities. Fitoterapia 98:254–259

    Article  CAS  Google Scholar 

  94. Garlaschelli L, Vidari G, Virtuani M, Vita-Finzi P, Mellerio G (1995) The structures of new lanostane triterpenes from the fruiting bodies of Hebeloma senescens. J Nat Prod 58:992–1002

    Article  CAS  Google Scholar 

  95. Shao HJ, Qing C, Wang F, Zhang YL, Luo DQ, Liu JK (2005) A new cytotoxic lanostane triterpenoid from the basidiomycete Hebeloma versipelle. J Antibiot (Tokyo) 58:828–831

    Article  CAS  Google Scholar 

  96. Isaka M, Chinthanom P, Sappan M, Chanthaket R, Luangsa-ard JJ, Prabpai S, Kongsaeree P (2011) Lanostane and hopane triterpenes from the entomopathogenic fungus Hypocrella sp. BCC 14524. J Nat Prod 74:2143–2150

    Article  CAS  Google Scholar 

  97. Ying YM, Zhang LY, Zhang X, Bai HB, Liang DE, Ma LF, Shan WG, Zhan ZJ (2014) Terpenoids with alpha-glucosidase inhibitory activity from the submerged culture of Inonotus obliquus. Phytochemistry 108:171–176

    Article  CAS  Google Scholar 

  98. Song FQ, Liu Y, Kong XS, Chang W, Song G (2013) Progress on understanding the anticancer mechanisms of medicinal mushroom: Inonotus obliquus. Asian Pac J Cancer Prev 14:1571–1578

    Article  Google Scholar 

  99. Zheng W, Miao K, Liu Y, Zhao Y, Zhang M, Pan S, Dai Y (2010) Chemical diversity of biologically active metabolites in the sclerotia of Inonotus obliquus and submerged culture strategies for up-regulating their production. Appl Microbiol Biotechnol 87:1237–1254

    Article  CAS  Google Scholar 

  100. Zheng W, Zhang M, Zhao Y, Miao K, Pan S, Cao F, Dai Y (2011) Analysis of antioxidant metabolites by solvent extraction from sclerotia of Inonotus obliquus (Chaga). Phytochem Anal 22:95–102

    Article  CAS  Google Scholar 

  101. Zheng W, Zhao Y, Zheng X, Liu Y, Pan S, Dai Y, Liu F (2011) Production of antioxidant and antitumor metabolites by submerged cultures of Inonotus obliquus cocultured with Phellinus punctatus. Appl Microbiol Biotechnol 89:157–167

    Article  CAS  Google Scholar 

  102. Handa N, Yamada T, Tanaka R (2010) An unusual lanostane-type triterpenoid, spiroinonotsuoxodiol, and other triterpenoids from Inonotus obliquus. Phytochemistry 71:1774–1779

    Article  CAS  Google Scholar 

  103. Nomura M, Takahashi T, Uesugi A, Tanaka R, Kobayashi S (2008) Inotodiol, a lanostane triterpenoid, from Inonotus obliquus inhibits cell proliferation through caspase-3-dependent apoptosis. Anticancer Res 28:2691–2696

    CAS  Google Scholar 

  104. Taji S, Yamada T, Wada S, Tokuda H, Sakuma K, Tanaka R (2008) Lanostane-type triterpenoids from the sclerotia of Inonotus obliquus possessing anti-tumor promoting activity. Eur J Med Chem 43:2373–2379

    Article  CAS  Google Scholar 

  105. Nakata T, Yamada T, Taji S, Ohishi H, Wada S, Tokuda H, Sakuma K, Tanaka R (2007) Structure determination of inonotsuoxides A and B and in vivo anti-tumor promoting activity of inotodiol from the sclerotia of Inonotus obliquus. Bioorg Med Chem 15:257–264

    Article  CAS  Google Scholar 

  106. León F, Quintana J, Rivera A, Estévez F, Bermejo J (2004) Lanostanoid triterpenes from Laetiporus sulphureus and apoptosis induction on HL-60 human myeloid leukemia cells. J Nat Prod 67:2008–2011

    Article  CAS  Google Scholar 

  107. Yoshikawa K, Matsumoto K, Mine C, Bando S, Arihara S (2000) Five lanostane triterpenoids and three saponins from the fruit body of Laetiporus versisporus. Chem Pharm Bull (Tokyo) 48:1418–1421

    Google Scholar 

  108. Kim KH, Moon E, Choi SU, Kim SY, Lee KR (2013) Lanostane triterpenoids from the mushroom Naematoloma fasciculare. J Nat Prod 76:845–851

    Article  CAS  Google Scholar 

  109. Shi XW, Li XJ, Gao JM, Zhang XC (2011) Fasciculols H and I, two lanostane derivatives from Chinese mushroom Naematoloma fasciculare. Chem Biodivers 8:1864–1870

    Article  CAS  Google Scholar 

  110. Liu HK, Tsai TH, Chang TT, Chou CJ, Lin LC (2009) Lanostane-triterpenoids from the fungus Phellinus gilvus. Phytochemistry 70:558–563

    Article  CAS  Google Scholar 

  111. Kamo T, Asanoma M, Shibata H, Hirota M (2003) Anti-inflammatory lanostane-type triterpene acids from Piptoporus betulinus. J Nat Prod 66:1104–1106

    Article  CAS  Google Scholar 

  112. Feng YL, Zhao YY, Ding F, Xi ZH, Tian T, Zhou F, Du X, Chen DQ, Wei F, Cheng XL, Lin RC (2013) Chemical constituents of surface layer of Poria cocos and their pharmacological properties (I). Zhongguo Zhong Yao Za Zhi 38:1098–1102

    CAS  Google Scholar 

  113. Kikuchi T, Uchiyama E, Ukiya M, Tabata K, Kimura Y, Suzuki T, Akihisa T (2011) Cytotoxic and apoptosis-inducing activities of triterpene acids from Poria cocos. J Nat Prod 74:137–144

    Article  CAS  Google Scholar 

  114. Huang YC, Chang WL, Huang SF, Lin CY, Lin HC, Chang TC (2010) Pachymic acid stimulates glucose uptake through enhanced GLUT4 expression and translocation. Eur J Pharmacol 648:39–49

    Article  CAS  Google Scholar 

  115. Akihisa T, Mizushina Y, Ukiya M, Oshikubo M, Kondo S, Kimura Y, Suzuki T, Tai T (2004) Dehydrotrametenonic acid and dehydroeburiconic acid from Poria cocos and their inhibitory effects on eukaryotic DNA polymerase α and β. Biosci Biotechnol Biochem 68:448–450

    Article  CAS  Google Scholar 

  116. Akihisa T, Nakamura Y, Tokuda H, Uchiyama E, Suzuki T, Kimura Y, Uchikura K, Nishino H (2007) Triterpene acids from Poria cocos and their anti-tumor-promoting effects. J Nat Prod 70:948–953

    Article  CAS  Google Scholar 

  117. Akihisa T, Uchiyama E, Kikuchi T, Tokuda H, Suzuki T, Kimura Y (2009) Anti-tumor-promoting effects of 25-methoxyporicoic acid A and other triterpene acids from Poria cocos. J Nat Prod 72:1786–1792

    Article  CAS  Google Scholar 

  118. Zhou L, Zhang Y, Gapter LA, Ling H, Agarwal R, Ng KY (2008) Cytotoxic and anti-oxidant activities of lanostane-type triterpenes isolated from Poria cocos. Chem Pharm Bull (Tokyo) 56:1459–1462

    Article  CAS  Google Scholar 

  119. Zheng Y, Yang XW (2008) Poriacosones A and B: two new lanostane triterpenoids from Poria cocos. J Asian Nat Prod Res 10:645–651

    Google Scholar 

  120. Zheng Y, Yang XW (2008) Two new lanostane triterpenoids from Poria cocos. J Asian Nat Prod Res 10:323–328

    Article  CAS  Google Scholar 

  121. Mizushina Y, Akihisa T, Ukiya M, Murakami C, Kuriyama I, Xu X, Yoshida H, Sakaguchi K (2004) A novel DNA topoisomerase inhibitor: dehydroebriconic acid, one of the lanostane-type triterpene acids from Poria cocos. Cancer Sci 95:354–360

    Article  CAS  Google Scholar 

  122. Ukiya M, Akihisa T, Tokuda H, Hirano M, Oshikubo M, Nobukuni Y, Kimura Y, Tai T, Kondo S, Nishino H (2002) Inhibition of tumor-promoting effects by poricoic acids G and H and other lanostane-type triterpenes and cytotoxic activity of poricoic acids A and G from Poria cocos. J Nat Prod 65:462–465

    Article  CAS  Google Scholar 

  123. Cuéllar MJ, Giner RM, Recio MC, Just MJ, Máñez S, Ríos JL (1996) Two fungal lanostane derivatives as phospholipase A2 inhibitors. J Nat Prod 59:977–979

    Article  Google Scholar 

  124. Cuéllar MJ, Giner RM, Recio MC, Just MJ, Mañez S, Rios JL (1997) Effect of the basidiomycete Poria cocos on experimental dermatitis and other inflammatory conditions. Chem Pharm Bull (Tokyo) 45:492–494

    Article  Google Scholar 

  125. Kanokmedhakul S, Kanokmedhakul K, Prajuabsuk T, Soytong K, Kongsaeree P, Suksamrarn A (2003) A bioactive triterpenoid and vulpinic acid derivatives from the mushroom Scleroderma citrinum. Planta Med 269:568–571

    Google Scholar 

  126. Shiono Y, Sugasawa H, Kurihara N, Nazarova M, Murayama T, Takahashi K, Ikeda M (2005) Three lanostane triterpenoids from the fruiting bodies of Stropharia aeruginosa. J Asian Nat Prod Res 7:735–740

    Article  CAS  Google Scholar 

  127. Shiono Y, Sugawara H, Nazarova M, Murayama T, Takahashi K, Ikeda M (2007) Three lanostane triterpenoids, aeruginosols A, B and C, from the fruiting bodies of Stropharia aeruginosa. J Asian Nat Prod Res 9:531–535

    Article  CAS  Google Scholar 

  128. Hien BT, le Hoa TP, le Tham X, Quang DN (2013) Cattienoids A-C, three novel steroids from the mushroom Tomophagus cattienensis. Fitoterapia 91:125–127

    Article  CAS  Google Scholar 

  129. Quang DN, Hashimoto T, Tanaka M, Asakawa Y (2003) Tyromycic acids F and G: two new triterpenoids from the mushroom Tyromyces fissilis. Chem Pharm Bull (Tokyo) 51:1441–1443

    Article  CAS  Google Scholar 

  130. Quang DN, Hashimoto T, Tanaka M, Takaoka S, Asakawa Y (2004) Tyromycic acids B-E, new lanostane triterpenoids from the mushroom Tyromyces fissilis. J Nat Prod 67:148–151

    Article  CAS  Google Scholar 

  131. Ríos JL, Francini F, Schinella GR (2015) Natural products for the treatment of type 2 diabetes mellitus. Planta Med 81:975–994

    Article  CAS  Google Scholar 

  132. Fall CH (2001) Non-industrialised countries and affluence. Br Med Bull 60:33–50

    Article  CAS  Google Scholar 

  133. Tuomilehto J, Lindström J, Eriksson JG, Valle TT, Hämäläinen H, Ilanne-Parikka P, Keinänen-Kiukaanniemi S, Laakso M, Louheranta A, Rastas M, Salminen V, Uusitupa M, Finnish Diabetes Prevention Study Group (2001) Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 344:1343–1350

    Article  CAS  Google Scholar 

  134. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, Nathan DM, Diabetes Prevention Program Research Group (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346:393–403

    Article  CAS  Google Scholar 

  135. Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M, STOPNIDDM Trail Research Group (2002) Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet 15:2072–2077

    Article  Google Scholar 

  136. DREAM (Diabetes Reduction Assessment with ramipril and rosiglitazone Medication) Trial Investigators, Gerstein HC, Yusuf S, Bosch J, Pogue J, Sheridan P, Dinccag N, Hanefeld M, Hoogwerf B, Laakso M, Mohan V, Shaw J, Zinman B, Holman RR (2006) Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial. Lancet 368:1096–1105

    Article  CAS  Google Scholar 

  137. Ulbricht C, Weissner W, Basch E, Giese N, Hammerness P, Rusie-Seamon E, Varghese M, Woods J (2009) Maitake mushroom (Grifola frondosa): systematic review by the natural standard research collaboration. J Soc Integr Oncol 7:66–72

    Google Scholar 

  138. Petrash JM (2004) All in the family: aldose reductase and closely related aldo-keto reductases. Cell Mol Life Sci 61:737–749

    Article  CAS  Google Scholar 

  139. Várkonyi T, Kempler P (2008) Diabetic neuropathy: new strategies for treatment. Diabetes Obes Metab 10:99–108

    Google Scholar 

  140. Zaid H, Antonescu CN, Randhawa VK, Klip A (2008) Insulin action on glucose transporters through molecular switches, tracks and tethers. Biochem J 413:201–215

    Article  CAS  Google Scholar 

  141. Scheepers A, Joost HG, Schurmann A (2004) The glucose transporter families SGLT and GLUT: molecular basis of normal and aberrant function. J Parenter Enteral Nutr 28:364–371

    Article  CAS  Google Scholar 

  142. Birnbaum MJ (2001) Diabetes. Dialogue between muscle and fat. Nature 409:672–673

    Article  CAS  Google Scholar 

  143. Sato M, Tai T, Nunoura Y, Yajima Y, Kawashima S, Tanaka K (2002) Dehydrotrametenolic acid induces preadipocyte differentiation and sensitizes animal models of noninsulin-dependent diabetes mellitus to insulin. Biol Pharm Bull 25:81–86

    Article  Google Scholar 

  144. Wang L, Waltenberger B, Pferschy-Wenzig EM, Blunder M, Liu X, Malainer C, Blazevic T, Schwaiger S, Rollinger JM, Heiss EH, Schuster D, Kopp B, Bauer R, Stuppner H, Dirsch VM, Atanasov AG (2014) Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a review. Biochem Pharmacol 92:73–89

    Article  CAS  Google Scholar 

  145. Pellicciari R, Costantino G, Fiorucci SJ (2005) Farnesoid X receptor: from structure to potential clinical applications. Med Chem 48:5383–5403

    Article  CAS  Google Scholar 

  146. Fiorucci S, Rizzo G, Donini A, Distrutti E, Santucci L (2007) Targeting farnesoid X receptor for liver and metabolic disorders. Trends Mol Med 13:298–309

    Article  CAS  Google Scholar 

  147. Yedgar S, Cohen Y, Shoseyov D (2006) Control of phospholipase A2 activities for the treatment of inflammatory conditions. Biochim Biophys Acta 1761:1373–1382

    Article  CAS  Google Scholar 

  148. Jain MK, Yu BZ, Rogers JM, Smith AE, Boger ET, Ostrander RL, Rheingold AL (1995) Specific competitive inhibitor of secreted phospholipase A2 from berries of Schinus terebinthifolius. Phytochemistry 39:537–547

    Article  CAS  Google Scholar 

  149. Li FF, Yuan Y, Liu Y, Wu QQ, Jiao R, Yang Z, Zhou MQ, Tang QZ (2015) Pachymic acid protects H9c2 cardiomyocytes from lipopolysaccharide-induced inflammation and apoptosis by inhibiting the extracellular signal-regulated kinase 1/2 and p38 pathways. Mol Med Rep 12:2807–2813

    CAS  Google Scholar 

  150. Yao X, Li G, Xu H, Lü C (2012) Inhibition of the JAK-STAT3 signaling pathway by ganoderic acid A enhances chemosensitivity of HepG2 cells to cisplatin. Planta Med 78:1740–1748

    Article  CAS  Google Scholar 

  151. Liu DL, Li YJ, Yang DH, Wang CR, Xu J, Yao N, Zhang XQ, Chen ZS, Ye WC, Zhang DM (2015) Ganoderma lucidum derived ganoderenic acid B reverses ABCB1-mediated multidrug resistance in HepG2/ADM cells. Int J Oncol 46:2029–2038

    CAS  Google Scholar 

  152. Ling H, Zhou L, Jia X, Gapter LA, Agarwal R, Ng KY (2009) Polyporenic acid C induces caspase-8-mediated apoptosis in human lung cancer A549 cells. Mol Carcinog 48:498–507

    Article  CAS  Google Scholar 

  153. Kang HM, Lee SK, Shin DS, Lee MY, Han DC, Baek NI, Son KH, Kwon BM (2006) Dehydrotrametenolic acid selectively inhibits the growth of H-ras transformed rat2 cells and induces apoptosis through caspase-3 pathway. Life Sci 78:607–613

    Article  CAS  Google Scholar 

  154. Ling H, Zhang Y, Ng KY, Chew EH (2011) Pachymic acid impairs breast cancer cell invasion by suppressing nuclear factor-κB-dependent matrix metalloproteinase-9 expression. Breast Cancer Res Treat 126:609–620

    Article  CAS  Google Scholar 

  155. Qiao X, Wang Q, Ji S, Huang Y, Liu KD, Zhang ZX, Bo T, Tzeng YM, Guo A, Ye M (2015) Metabolites identification and multi-component pharmacokinetics of ergostane and lanostane triterpenoids in the anticancer mushroom Antrodia cinnamomea. J Pharm Biomed Anal 111:266–276

    Article  CAS  Google Scholar 

  156. Zhao F, Mai Q, Ma J, Xu M, Wang X, Cui T, Qiu F, Han G (2015) Triterpenoids from Inonotus obliquus and their antitumor activities. Fitoterapia 101:34–40

    Article  CAS  Google Scholar 

  157. Kikuchi T, Ishii K, Ogihara E, Zhang J, Ukiya M, Tokuda H, Iida T, Tanaka R, Akihisa T (2014) Cytotoxic and apoptosis-inducing activities, and anti-tumor-promoting effects of cyanogenated and oxygenated triterpenes. Chem Biodivers 11:491–504

    Article  CAS  Google Scholar 

  158. Zhang L, Ravipati AS, Koyyalamudi SR, Jeong SC, Reddy N, Bartlett J, Smith PT, de la Cruz M, Monteiro MC, Melguizo A, Jiménez E, Vicente F (2013) Anti-fungal and anti-bacterial activities of ethanol extracts of selected traditional Chinese medicinal herbs. Asian Pac J Trop Med 6:673–681

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José-Luis Ríos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Ríos, JL., Andújar, I. (2017). Lanostanoids from Fungi as Potential Medicinal Agents. In: Mérillon, JM., Ramawat, K. (eds) Fungal Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-25001-4_19

Download citation

Publish with us

Policies and ethics