Skip to main content

Aspergillus Lipases: Biotechnological and Industrial Application

  • Reference work entry
  • First Online:
Fungal Metabolites

Abstract

Lipases are enzymes with remarkable properties and catalytic versatility. These proteins are capable of catalyzing hydrolytic and synthetic reactions, allowing the production of different compounds. Aspergillus are important producers of lipases, since they are able to secrete large amounts of these proteins to the extracellular media. Several studies have reported the importance of fermentation parameters as well as genetic engineering of Aspergillus strains in order to improve lipase production. Different Aspergillus species secrete lipases with interesting characteristics such as thermostability, stability in a wide pH range, stability in organic solvents, and enantioselectivity toward the substrate. The obtainment of lipases with highlighted characteristics for use in industry is the main focus of several studies. Such lipases can be obtained with screening of Aspergillus strains, protein engineering, and immobilization of lipases that can frequently improve thermostability and enantioselectivity. Among the applications of lipases from Aspergillus, there are studies on the improvement of sensorial properties of different products in the food industry, compatibility with detergents for removal of fat stains from fabrics, and the obtainment of enantiopure pharmaceuticals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Contesini FJ, Lopes DB, Macedo GA, Nascimento MDG, Carvalho PO (2010) Aspergillus sp. lipase: potential biocatalyst for industrial use. J Mol Catal B: Enzym 67:163–171

    Article  CAS  Google Scholar 

  2. Schmid RD, Verger R (1998) Lipases: interfacial enzymes with attractive applications. Angew Chem Int Ed. 37:1608–1633

    Google Scholar 

  3. Jaeger K, Eggert T (2002) Lipases for biotechnology. Curr Open Biotechnol 13:390–397

    Article  CAS  Google Scholar 

  4. Tufvesson P, Lima-Ramos J, Nordblad M, Woodley JM (2011) Guidelines and cost analysis for catalyst production in biocatalytic processes. Org Process Res Dev 15:266–274

    Article  CAS  Google Scholar 

  5. Durand A, Chereau D (1988) A new pilot reactor for solid-state fermentation: application to the protein enrichment of sugar beet pulp. Biotechnol Bioeng 31:476–486

    Article  CAS  Google Scholar 

  6. Ward OP, Qin WM, Dhanjoon J, Ye J, Singh A (2005) Physiology and biotechnology of Aspergillus. Adv Appl Microbiol 58C:1–75

    Article  CAS  Google Scholar 

  7. Schaffarczyk M, Ostdal H, Koehler P (2014) Lipases in wheat breadmaking: analysis and functional effects of lipid reaction products. J Agric Food Chem 62:8229–8237

    Article  CAS  Google Scholar 

  8. Jurado E, García-Román M, Luzón G, Altmajer-Vaz D, Jiménez-Pérez JL (2011) Optimization of lipase performance in detergent formulations for hard surfaces. Ind Eng Chem Res 50:11502–11510

    Article  CAS  Google Scholar 

  9. Contesini FJ, de Oliveira CP (2006) Esterification of (RS)-Ibuprofen by native and commercial lipases in a two-phase system containing ionic liquids. Tetrahedron Asymm 17:2069–2073

    Article  CAS  Google Scholar 

  10. Tan T, Lu J, Nie K, Deng L, Wang F (2010) Biodiesel production with immobilized lipase: a review. Biotechnol Adv 28:628–634

    Article  CAS  Google Scholar 

  11. Rosset IG, Cavalheiro MCHT, Assaf EM, Porto ALM (2013) Enzymatic esterification of oleic acid with aliphatic alcohols for the biodiesel production by Candida antarctica lipase. Catal Lett 143:863–872

    Article  CAS  Google Scholar 

  12. Da Silva VCF, Contesini FJ, Carvalho PDO (2008) Characterization and catalytic activity of free and immobilized lipase from Aspergillus niger: a comparative study. J Braz Chem Soc 19:1468–1474

    Article  Google Scholar 

  13. Da Silva VCF, Contesini FJ, De Oliveira CP (2009) Enantioselective behavior of lipases from Aspergillus niger immobilized in different supports. J Ind Microbiol Biotechnol 36:949–954

    Article  CAS  Google Scholar 

  14. Ward OP, Qin WM, Dhanjoon J, Ye J, Singh A (2005) Physiology and biotechnology of Aspergillus. Adv Appl Microbiol 58:1–75

    Article  Google Scholar 

  15. Varga J, Szigeti G, Baranyi N, Kocsubé S, O’Gorman CM, Dyer PS (2014) Aspergillus: sex and recombination. Mycopathologia 178:349–362

    Article  CAS  Google Scholar 

  16. Ward OP (2012) Production of recombinant proteins by filamentous fungi. Biotechnol Adv 30:1119–1139

    Article  CAS  Google Scholar 

  17. Gouka RJ, Punt PJ, van den Hondel CAMJJ (1997) Efficient production of secreted proteins by Aspergillus: progress, limitations and prospects. Appl Microbiol Biotechnol 47:1–11

    Article  CAS  Google Scholar 

  18. Fleiβner A, Dersch P (2010) Expression and export: recombinant protein production systems for Aspergillus. Appl Microbiol Biotechnol 87:1255–1270

    Article  CAS  Google Scholar 

  19. Nevalainen KMH, Te’o VSJ, Bergquist PL (2005) Heterologous protein expression in filamentous fungi. Trends Biotechnol 23:468–474

    Article  CAS  Google Scholar 

  20. Pontecorvo G, Roper JA, Chemmons LM, Macdonald KD, Bufton AWJ (1953) The genetics of Aspergillus nidulans. Adv Genet 5:141–238

    CAS  Google Scholar 

  21. Galagan JE, Calvo SE, Cuomo C et al (2005) Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438:1105–1115

    Article  CAS  Google Scholar 

  22. Saykhedkar S, Ray A, Ayoubi-Canaan P, Hartson SD, Prade R, Mort AJ (2012) A time course analysis of the extracellular proteome of Aspergillus nidulans growing on sorghum stover. Biotechnol Biofuels 5:52

    Article  CAS  Google Scholar 

  23. Tilburn J, Scazzocchio C, Taylor GG, Zabicky-Zissman JH, Lockington RA, Davies RW (1983) Transformation by integration in Aspergillus nidulans. Gene 26:205–221

    Article  CAS  Google Scholar 

  24. Borgström B, Brockman HL (1984) Lipases. Elsevier, Amsterdam

    Google Scholar 

  25. Kapoor M, Gupta MN (2012) Lipase promiscuity and its biochemical applications. Process Biochem 47:555–569

    Article  CAS  Google Scholar 

  26. Yadav RP, Saxena RK, Gupta R, Davidson S (1998) Lipase production by Aspergillus and Penicillium species. Folia Microbiol (Praha) 43:373–378

    Article  CAS  Google Scholar 

  27. Gupta R, Kumari A, Syal P, Singh Y (2015) Molecular and functional diversity of yeast and fungal lipases: their role in biotechnology and cellular physiology. Prog Lipid Res 57:40–54

    Article  CAS  Google Scholar 

  28. Bassegoda A, Pastor FIJ, Diaz P (2012) Rhodococcus sp. strain CR-53 lipr, the first member of a new bacterial lipase family (Family X) displaying an unusual Y-type oxyanion hole, similar to the Candida antarctica lipase clan. Appl Environ Microbiol 78:1724–1732

    Article  CAS  Google Scholar 

  29. Hult K, Berglund P (2007) Enzyme promiscuity: mechanism and applications. Trends Biotechnol 25:231–238

    Article  CAS  Google Scholar 

  30. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) Carbohydrate active enzymes database. Carbohydrate-active enzyme database an expert resource glycogenomics. Nucleic Acids Res 37:D233–D238

    Article  CAS  Google Scholar 

  31. Arpigny JL, Jaeger KE (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343(Pt 1):177–183

    Article  CAS  Google Scholar 

  32. Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM, Harel M, Remington SJ, Silman I, Schrag J, Sussman JL, Verschueren KHG, Goldman A (1992) The α/β hydrolase fold. Protein Eng Des Sel 5:197–211

    Article  CAS  Google Scholar 

  33. Cousin X, Hotelier T, Lievin P, Toutant JP, Chatonnet A (1996) A cholinesterase genes serverer (ESTHER): a database of cholinesterase-related sequences for multiple alignments, phylogenetic relationships, mutations and structural data retrieval. Nucleic Acids Res 24:132–136

    Article  CAS  Google Scholar 

  34. Cousin X, Hotelier T, Giles K, Lievin P, Toutant J, Chatonnet A (1997) The α/β fold family of proteins database and the cholinesterase gene server ESTHER. Nucleic Acids Res 25:143–146

    Google Scholar 

  35. Lenfant N, Hotelier T, Velluet E, Bourne Y, Marchot P, Chatonnet A (2013) ESTHER, the database of the α/β -hydrolase fold superfamily of proteins: tools to explore diversity of functions. Nucleic Acids Res 41:423–429

    Article  CAS  Google Scholar 

  36. Widmann M, Juhl PB, Pleiss J (2010) Structural classification by the Lipase Engineering Database: a case study of Candida antarctica lipase A. BMC Genomics 11:123

    Article  CAS  Google Scholar 

  37. Fischer M, Pleiss J (2003) The Lipase Engineering Database: a navigation and analysis tool for protein families. Nucleic Acids Res 31:319–321

    Article  CAS  Google Scholar 

  38. Fischer M, Thai QK, Grieb M, Pleiss J (2006) DWARF–A data warehouse system for analyzing protein families. BMC Bioinformatics 7:495

    Article  CAS  Google Scholar 

  39. Fischer M, Peiker M, Thiele C, Schmid RD (2000) Lipase engineering database Understanding and exploiting sequence – structure – function relationships Jurgen. J Mol Catal 10:491–508

    Article  Google Scholar 

  40. Zhou P, Zhang G, Chen S, Jiang Z, Tang Y, Henrissat B, Yan Q, Yang S, Chen C-F, Zhang B, Du Z (2014) Genome sequence and transcriptome analyses of the thermophilic zygomycete fungus Rhizomucor miehei. BMC Genomics 15:294

    Article  CAS  Google Scholar 

  41. Singh AK, Mukhopadhyay M (2012) Overview of fungal lipase: a review. Appl Biochem Biotechnol 166:486–520

    Article  CAS  Google Scholar 

  42. Hasan F, Shah AA, Hameed A (2009) Methods for detection and characterization of lipases: a comprehensive review. Biotechnol Adv 27:782–798

    Article  CAS  Google Scholar 

  43. Bornscheuer UT, Bessler C, Srinivas R, Hari Krishna S (2002) Optimizing lipases and related enzymes for efficient application. Trends Biotechnol 20:433–437

    Article  CAS  Google Scholar 

  44. Salihu A, Alam MZ (2015) Solvent tolerant lipases: a review. Process Biochem 50:86–96

    Article  CAS  Google Scholar 

  45. Venkatesagowda B, Ponugupaty E, Barbosa AM, Dekker RFH (2012) Diversity of plant oil seed-associated fungi isolated from seven oil-bearing seeds and their potential for the production of lipolytic enzymes. World J Microbiol Biotechnol 28:71–80

    Article  CAS  Google Scholar 

  46. Vasudevan PT (2004) Purification of lipase. In: Müller G, Petry S (eds) Lipases and phospholipases in drug development: from biochemistry to molecular pharmacology. Wiley on-line library, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG

    Google Scholar 

  47. Jaeger KE, Reetz MT (1998) Microbial lipases form versatile tools for biotechnology. Trends Biotechnol 16:396–403

    Article  CAS  Google Scholar 

  48. Edwinoliver NG, Thirunavukarasu K, Naidu RB, Gowthaman MK, Kambe TN, Kamini NR (2010) Scale up of a novel tri-substrate fermentation for enhanced production of Aspergillus niger lipase for tallow hydrolysis. Bioresour Technol 101:6791–6796

    Article  CAS  Google Scholar 

  49. Mahadik ND, Puntambekar US, Bastawde KB, Khire JM, Gokhale DV (2002) Production of acidic lipase by Aspergillus niger in solid state fermentation. Process Biochem 38:715–721

    Article  CAS  Google Scholar 

  50. Trimukhe KD, Mahadik ND, Gokhale DV, Varma AJ (2008) Environment friendly crosslinked chitosan as a matrix for selective adsorption and purification of lipase of Aspergillus niger. Int J Biol Macromol 43:422–425

    Article  CAS  Google Scholar 

  51. Mhetras NC, Bastawde KB, Gokhale DV (2009) Purification and characterization of acidic lipase from Aspergillus niger NCIM 1207. Bioresour Technol 100:1486–1490

    Article  CAS  Google Scholar 

  52. Kamini NR, Mala JGS, Puvanakrishnan R (1998) Lipase production from Aspergillus niger by solid-state fermentation using gingelly oil cake. Process Biochem 33:505–511

    Article  CAS  Google Scholar 

  53. Mala JGS, Edwinoliver NG, Kamini NR, Puvanakrishnan R (2007) Mixed substrate solid state fermentation for production and extraction of lipase from Aspergillus niger MTCC 2594. J Gen Appl Microbiol 53:247–253

    Article  CAS  Google Scholar 

  54. Veerabhadrappa MB, Shivakumar SB, Devappa S (2014) Solid-state fermentation of Jatropha seed cake for optimization of lipase, protease and detoxification of anti-nutrients in Jatropha seed cake using Aspergillus versicolor CJS-98. J Biosci Bioeng 117:208–214

    Article  CAS  Google Scholar 

  55. D’Annibale A, Sermanni GG, Federici F, Petruccioli M (2006) Olive-mill wastewaters: a promising substrate for microbial lipase production. Bioresour Technol 97:1828–1833

    Article  CAS  Google Scholar 

  56. Pokorny D (1997) Aspergillus niger lipases: induction, isolation and characterization of two lipases from a MZKI Al 16 strain. J Mol Catal B: Enzym 177:215–222

    Google Scholar 

  57. Hong S, Horiuchi H, Ohta A (2003) Molecular cloning of a phospholipase D gene from Aspergillus nidulans and characterization of its deletion mutants. FEMS Microbiol Lett 224:231–237

    Article  CAS  Google Scholar 

  58. Hong S, Horiuchi H, Ohta A (2005) Identification and molecular cloning of a gene encoding Phospholipase A2 (plaA) from Aspergillus nidulans. Biochim Biophys Acta 1735:222–229

    Article  CAS  Google Scholar 

  59. Shi H, Meng Y, Yang M, Zhang Q, Meng Y (2014) Purification and characterization of a hydrolysis-resistant lipase from Aspergillus terreus. Biotechnol Appl Biochem 61:165–174

    Article  CAS  Google Scholar 

  60. Padhiar J, Das A, Bhattacharya S (2011) Optimization of process parameters influencing the submerged fermentation of extracellular lipases from Pseudomonas aeruginosa, Candida albicans and Aspergillus flavus. Pak J Biol Sci 14:1011–1018

    Article  CAS  Google Scholar 

  61. Tereza L, Souza A, Oliveira JS, Santos VL, Regis WCB, Santoro MM, Resende RR (2014) Lipolytic potential of Aspergillus japonicus LAB01: production, partial purification, and characterisation of an Extracellular Lipase. Biomed Res Int 2014:1–11. Article ID 108913

    Google Scholar 

  62. Abrunhosa L, Oliveira F, Dantas D, Gonçalves C, Belo I (2013) Lipase production by Aspergillus ibericus using olive mill wastewater. Bioprocess Biosyst Eng 36:285–291

    Article  CAS  Google Scholar 

  63. Shangguan J-J, Liu Y-Q, Wang F-J, Zhao J, Fan L-Q, Li S-X, Xu J-H (2011) Expression and characterization of a novel lipase from Aspergillus fumigatus with high specific activity. Appl Biochem Biotechnol 165:949–962

    Article  CAS  Google Scholar 

  64. Dayanandan A, Rani SHV, Shanmugavel M, Gnanamani A, Rajakumar GS (2013) Enhanced production of Aspergillus tamarii lipase for recovery of fat from tannery fleshings. Braz J Microbiol 1095:1089–1095

    Article  Google Scholar 

  65. Mayordomo I, Randez-gil F, Prieto JA (2000) Isolation, purification, and characterization of a cold-active lipase from Aspergillus nidulans. J Agric Food Chem 48:105–109

    Google Scholar 

  66. Basheer SM, Chellappan S, Beena PS, Sukumaran RK, Elyas KK, Chandrasekaran M (2011) Lipase from marine Aspergillus awamori BTMFW032: production, partial purification and application in oil effluent treatment. N Biotechnol 28:627–638

    Article  CAS  Google Scholar 

  67. Kaushik R, Saran S, Isar J, Saxena RK (2006) Statistical optimization of medium components and growth conditions by response surface methodology to enhance lipase production by Aspergillus carneus. J Mol Catal B: Enzym 40:121–126

    Article  CAS  Google Scholar 

  68. Dobrev G, Zhekova B, Dobreva V, Strinska H, Doykina P, Krastanov A (2015) Lipase biosynthesis by Aspergillus carbonarius in a nutrient medium containing products and byproducts from the oleochemical industry. Biocatal Agric Biotechnol 4:77–82

    Google Scholar 

  69. Singh RK, Tiwari MK, Singh R, Lee JK (2013) From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes. Int J Mol Sci 14:1232–1277

    Article  CAS  Google Scholar 

  70. Zhao X, Qi F, Yuan C, Du W, Liu D (2015) Lipase-catalyzed process for biodiesel production: enzyme immobilization, process simulation and optimization. Renew Sustain Energy Rev 44:182–197

    Article  CAS  Google Scholar 

  71. Guldhe A, Singh B, Mutanda T, Permaul K, Bux F (2015) Advances in synthesis of biodiesel via enzyme catalysis: novel and sustainable approaches. Renew Sustain Energy Rev 41:1447–1464

    Article  CAS  Google Scholar 

  72. Asgher M, Shahid M, Kamal S, Iqbal HMN (2014) Recent trends and valorization of immobilization strategies and ligninolytic enzymes by industrial biotechnology. J Mol Catal B: Enzym 101:56–66

    Article  CAS  Google Scholar 

  73. Adlercreutz P (2013) Immobilisation and application of lipases in organic media. Chem Soc Rev 42:6406–6436

    Article  CAS  Google Scholar 

  74. Raghuvanshi S, Gupta R (2010) Advantages of the immobilization of lipase on porous supports over free enzyme. Protein Pept Lett 17:1412–1416

    Article  CAS  Google Scholar 

  75. Homaei AA, Sariri R, Vianello F, Stevanato R (2013) Enzyme immobilization: an update. J Chem Biol 6:185–205

    Article  Google Scholar 

  76. Christopher LP, Kumar H, Zambare VP (2014) Enzymatic biodiesel: challenges and opportunities. Appl Energy 119:497–520

    Article  CAS  Google Scholar 

  77. Jegannathan KR, Abang S (2008) Production of biodiesel using immobilized lipase – a critical review. Crit Rev Biotechnol 28:253–264

    Article  CAS  Google Scholar 

  78. Yücel Y, Demir C, Dizge N, Keskinler B (2011) Lipase immobilization and production of fatty acid methyl esters from canola oil using immobilized lipase. Biomass Bioenergy 35:1496–1501

    Article  CAS  Google Scholar 

  79. Zhang B, Weng Y, Xu H (2012) Enzyme immobilization for biodiesel production. Appl Microbiol Biotechnol 93:61–70

    Article  CAS  Google Scholar 

  80. Zubiolo C, Cristiane R, Santos A (2014) Encapsulation in a sol–gel matrix of lipase from Aspergillus niger obtained by bioconversion of a novel agricultural residue. Bioprocess Biosyst Eng 37:1781–1788

    CAS  Google Scholar 

  81. Osho MB, Popoola T, Kareem SO (2014) Immobilization of Aspergillus niger ATCC 1015 on bionatural structures for lipase production. Eng Life Sci 14:449–454

    Article  CAS  Google Scholar 

  82. Hanefeld U, Gardossi L, Magner E (2009) Understanding enzyme immobilisation. Chem Soc Rev 38:453–468

    Article  CAS  Google Scholar 

  83. Osuna Y, Sandoval J, Saade H, López RG, Martinez JL, Colunga EM, de la Cruz G, Segura EP, Arévalo FJ, Zon MA, Fernández H, Ilyina A (2015) Immobilization of Aspergillus niger lipase on chitosan–coated magnetic nanoparticles using two covalent-binding methods. Bioprocess Biosyst Eng 38:1437–1445

    Google Scholar 

  84. Dhand C, Solanki PR, Sood KN, Datta M, Malhotra BD (2009) Polyaniline nanotubes for impedimetric triglyceride detection. Electrochem Commun 11:1482–1486

    Article  CAS  Google Scholar 

  85. Murty VR, Bhat J, Muniswaran PKA (2002) Hydrolysis of oils by using immobilized lipase enzyme: a review. Biotechnol Bioprocess Eng 7:57–66

    Article  CAS  Google Scholar 

  86. Mohamad NR, Marzuki NHC, Buang NA, Huyop F, Wahab RA (2015) An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol Biotechnol Equip 29:1–16

    Article  CAS  Google Scholar 

  87. Tudorache M, Nae A, Coman S, Parvulescu VI (2013) Strategy of cross-linked enzyme aggregates onto magnetic particles adapted to the green design of biocatalytic synthesis of glycerol carbonate. RSC Adv 3:4052

    Article  CAS  Google Scholar 

  88. Nielsen PH (2015) The Novozymes Report 2014

    Google Scholar 

  89. FDA - Food and Drug Administration (2010) Enzyme preparations: recommendations for submission of chemical and technological data for food additive petitions and GRAS notices. Ingredients, additives, GRAS & packaging guidance documents & regulatory information. http://www.fda.gov/downloads/Food/GuidanceRegulation/UCM217735.pdf acessed May 17, 2016.

  90. García EF, Fandiño RL, Alonso L, Ramos M (1994) The use of lipolytic and proteolytic enzymes in the manufacture of Manchego type cheese from ovine and bovine milk. J Dairy Sci 77:2139–2149

    Article  Google Scholar 

  91. Jolly RC, Kosikowski FV (1975) Flavor development in pasteurized milk blue cheese by animal and microbial lipase preparations. J Dairy Sci 58:846–852

    Article  CAS  Google Scholar 

  92. Kim Ha J, Lindsay RC (1993) Release of volatile branched-chain and other fatty acids from ruminant milk fats by various lipases. J Dairy Sci 76:677–690

    Article  Google Scholar 

  93. Hernández I, De Renobales M, Virto M, Pérez-Elortondo FJ, Barron LJR, Flanagan C, Albisu M (2005) Assessment of industrial lipases for flavour development in commercial Idiazabal (ewe’s raw milk) cheese. Enzyme Microb Technol 36:870–879

    Article  CAS  Google Scholar 

  94. Arbige MV, Neubeck C (1987) Lipolytic enzyme derived from a Aspergillus microorganism having an accelerating effect on cheese flavor development. US 4,726,954 A

    Google Scholar 

  95. Jolly RC, Kosikowski FV (1975) Quantification of lactones in ripening pasteurized milk blue cheese containing added microbial lipases. J Agric Food Chem 23:1175–1176

    Article  CAS  Google Scholar 

  96. Van Eijk JH, Docter C (2001) Dough product and method for improving bread quality. US 6,251,444 B1

    Google Scholar 

  97. Olesen T, Si JQ, Donelyan V (2000) Use of lipases in baking. US 6,110,508 A

    Google Scholar 

  98. Rey MW, Golightly EJ, Spendler T (2003) Methods for using lipases in baking. US 65,558,715 B1

    Google Scholar 

  99. Siswoyo TA, Tanaka N, Morita N (1999) Effect of lipase combined with alpha-amylase of retrogradation of bread. Food Sci Technol Res 5:356–361

    Article  CAS  Google Scholar 

  100. Park SH, Maeda T, Morita N (2005) Effect of whole quinoa flours and lipase on the chemical, rheological and breadmaking characteristics of wheat flour. J Appl Glycosci 52:337–343

    Article  CAS  Google Scholar 

  101. Hamam F, Shahidi F (2005) Enzymatic incorporation of capric acid into a single cell oil rich in docosahexaenoic acid and docosapentaenoic acid and oxidative stability of the resultant structured lipid. Food Chem 91:583–591

    Article  CAS  Google Scholar 

  102. Zhou D, Xu X, Mu H, Høy C-E, Adler-Nissen J (2007) Lipase-catalyzed production of structured lipids via acidolysis of fish oil with caprylic acid. J Food Lipids 7:263–274

    Article  Google Scholar 

  103. Rajan A, Sobankumar DR, Nair AJ (2013) Enrichment of ω-3 fatty acids in flax seed oil by alkaline lipase of Aspergillus fumigatus MTCC 9657. Int J Food Sci Technol 1994:1337–1343

    Google Scholar 

  104. Carvalho PO, Calafatti SA, Marassi M, Da Silva DM, Contesini FJ, Bizaco R, Macedo GA (2005) Potencial de biocatálise enantiosseletiva de lipases microbianas. Quim Nova 28:614–621

    Article  CAS  Google Scholar 

  105. Houde A, Kademi A, Leblanc D (2004) Lipases and their industrial applications: an overview. Appl Biochem Biotechnol 118:155–170

    Article  CAS  Google Scholar 

  106. Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzyme Microb Technol 39:235–251

    Article  CAS  Google Scholar 

  107. Carvalho PDO, Contesini FJ, Ikegaki M (2006) Enzymatic resolution of (R, S)-ibuprofen and (R, S)-ketoprofen by microbial lipases from native and commercial sources. Braz J Microbiol 37:329–337

    Article  CAS  Google Scholar 

  108. Tamborini L, Romano D, Pinto A, Contente M, Iannuzzi MC, Conti P, Molinari F (2013) Biotransformation with whole microbial systems in a continuous flow reactor: resolution of (RS)-flurbiprofen using Aspergillus oryzae by direct esterification with ethanol in organic solvent. Tetrahedron Lett 54:6090–6093

    Article  CAS  Google Scholar 

  109. Hu C, Wang N, Zhang W, Zhang S, Meng Y, Yu X (2015) Immobilization of Aspergillus terreus lipase in self-assembled hollow nanospheres for enantioselective hydrolysis of ketoprofen vinyl ester. J Biotechnol 194:12–18

    Article  CAS  Google Scholar 

  110. Pandey A, Benjamin S, Soccol CR, Nigam P, Krieger N, Soccol VT (1999) The realm of microbial lipases in biotechnology. Biotechnol Appl Biochem 29:119–131

    CAS  Google Scholar 

  111. Li C, Li L, Zhou H, Xia C, He L (2015) Improving yield of 1,3-diglyceride by whole-cell lipase from A. niger GZUF36 catalyzed glycerolysis via medium optimization. J Braz Chem Soc 26:247–254

    CAS  Google Scholar 

  112. Tamalampudi S, Hama S, Tanino T, Talukder MR, Kondo A, Fukuda H (2007) Immobilized recombinant Aspergillus oryzae expressing heterologous lipase: an efficient whole-cell biocatalyst for enantioselective transesterification in non-aqueous medium. J Mol Catal B: Enzym 48:33–37

    Article  CAS  Google Scholar 

  113. Pera LM, Romero CM, Baigori MD, Castro GR (2006) Catalytic properties of lipase extracts from Aspergillus niger. Food Technol Biotechnol 44:247–252

    CAS  Google Scholar 

  114. Messias JM, Da Costa BZ, De Lima VMG, Giese C, Dekker RFH, Barbosa ADM (2011) Lipases microbianas: Produção, propriedades e aplicações biotecnológicas. Semin Ciências Exatas e Tecnológicas 32:213–234

    Article  CAS  Google Scholar 

  115. Ding Y, Ni X, Gu M, Li S, Huang H, Hu Y (2015) Knoevenagel condensation of aromatic aldehydes with active methylene compounds catalyzed by lipoprotein lipase. Catal Commun 64:101–104

    Article  CAS  Google Scholar 

  116. Stergiou PY, Foukis A, Filippou M, Koukouritaki M, Parapouli M, Theodorou LG, Hatziloukas E, Afendra A, Pandey A, Papamichael EM (2013) Advances in lipase-catalyzed esterification reactions. Biotechnol Adv 31:1846–1859

    Article  CAS  Google Scholar 

  117. Božič M, Vivod V, Kavčič S, Leitgeb M, Kokol V (2015) New findings about the lipase acetylation of nanofibrillated cellulose using acetic anhydride as acyl donor. Carbohydr Polym 125:340–351

    Article  CAS  Google Scholar 

  118. Olsen H, Falholt P (1998) The role of enzymes in modern detergency. J Surfactant Deterg 1:555–567

    Article  CAS  Google Scholar 

  119. Nagarajan S (2012) New tools for exploring old friends-microbial lipases. Appl Biochem Biotechnol 168:1163–1196

    Article  CAS  Google Scholar 

  120. Hasan F, Shah AA, Javed S, Hameed A (2010) Enzymes used in detergents: lipases. Afr J Biotechnol 9:4836–4844

    Google Scholar 

  121. Sharma R, Chisti Y, Banerjee UC (2001) Production, purification, characterization, and applications of lipases. Biotechnol Adv 19:627–662

    Article  CAS  Google Scholar 

  122. Crooks GE, Rees GD, Robinson BH, Svensson M, Stephenson GR (1995) Comparison of hydrolysis and esterification behavior of Humicola lanuginosa and Rhizomucor-miehei lipases in Aot-stabilized water-in-oil microemulsions: II. Effect of temperature on reaction kinetics and general considerations of stability and productivity. Biotechnol Bioeng 48:78–88

    Article  CAS  Google Scholar 

  123. Shi H, Meng Y, Yang M, Zhang Q, Meng Y (2014) Purification and characterization of a hydrolysis-resistant lipase from Aspergillus terreus. Biotechnol Appl Biochem 61:165–174. doi:10.1002/bab.1142

    Article  CAS  Google Scholar 

  124. Saisubramanian N, Edwinoliver NG, Nandakumar N, Kamini NR, Puvanakrishnan R (2006) Efficacy of lipase from Aspergillus niger as an additive in detergent formulations: a statistical approach. J Ind Microbiol Biotechnol 33:669–676

    Article  CAS  Google Scholar 

  125. Saxena RK, Davidson WS, Sheoran A, Giri B (2003) Purification and characterization of an alkaline thermostable lipase from Aspergillus carneus. Process Biochem 39:239–247

    Article  CAS  Google Scholar 

  126. Sarkar D, Shimizu K (2015) An overview on biofuel and biochemical production by photosynthetic microorganisms with understanding of the metabolism and by metabolic engineering together with efficient cultivation and downstream processing. Bioresour Bioprocess 2:17

    Article  Google Scholar 

  127. Fan X, Niehus X, Sandoval G (2012) Lipases as biocatalyst for biodiesel production. Methods Mol Biol 861:471–483

    Article  CAS  Google Scholar 

  128. Gog A, Roman M, Toşa M, Paizs C, Irimie FD (2012) Biodiesel production using enzymatic transesterification – current state and perspectives. Renew Energy 39:10–16

    Article  CAS  Google Scholar 

  129. Chen X, Du W, Liu D, Ding F (2008) Lipase-mediated methanolysis of soybean oils for biodiesel production. J Chem Technol Biotechnol 83:71–76

    Article  CAS  Google Scholar 

  130. Talukder MR, Lee HZS, Low RF, Pei-lyn LC, Warzecha D, Wu J (2013) Potential use of whole cell lipase from a newly isolated Aspergillus nomius for methanolysis of palm oil to biodiesel. J Mol Catal B: Enzym 89:108–113

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabiano Jares Contesini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Contesini, F.J. et al. (2017). Aspergillus Lipases: Biotechnological and Industrial Application. In: Mérillon, JM., Ramawat, K. (eds) Fungal Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-25001-4_17

Download citation

Publish with us

Policies and ethics