Skip to main content

Personalized Radiation Therapy (PRT) for Lung Cancer

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 890))

Abstract

This chapter reviews and discusses approaches and strategies of personalized radiation therapy (PRT) for lung cancers at four different levels: (1) clinically established PRT based on a patient’s histology, stage, tumor volume and tumor locations; (2) personalized adaptive radiation therapy (RT) based on image response during treatment; (3) PRT based on biomarkers; (4) personalized fractionation schedule. The current RT practice for lung cancer is partially individualized according to tumor histology, stage, size/location, and combination with use of systemic therapy. During-RT PET-CT image guided adaptive treatment is being tested in a multicenter trial. Treatment response detected by the during-RT images may also provide a strategy to further personalize the remaining treatment. Research on biomarker-guided PRT is ongoing. The biomarkers include genomics, proteomics, microRNA, cytokines, metabolomics from tumor and blood samples, and radiomics from PET, CT, SPECT images. Finally, RT fractionation schedule may also be personalized to each individual patient to maximize therapeutic gain. Future PRT should be based on comprehensive considerations of knowledge acquired from all these levels, as well as consideration of the societal value such as cost and effectiveness.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jemal A, Siegel R et al (2009) Cancer statistics, 2009. Cancer J Clin 59(4):225–249

    Article  Google Scholar 

  2. Ferlay JSH, Bray F, Forman D, Mathers C, Parkin DM (2010) “GLOBOCAN 2008.” Cancer incidence and mortality worldwide: IARC CancerBase. International Agency for Research on Cancer; 2010 No. 10

    Google Scholar 

  3. Ettinger DS, Akerley W, Borghaei H et al (2013) National comprehensive cancer network. Non-small cell lung cancer, version 2.2013. J Natl Compr Canc Netw 11(6):645–653

    PubMed  Google Scholar 

  4. Timmerman R, Paulus R et al (2010) Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA 303(11):1070–1076

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Timmerman R, Bastasch M et al (2007) Optimizing dose and fractionation for stereotactic body radiation therapy. Normal tissue and tumor control effects with large dose per fraction. Front Radiat Ther Oncol 40:352–365

    Article  PubMed  Google Scholar 

  6. Onishi H, Araki T et al (2004) Stereotactic hypofractionated high-dose irradiation for stage I nonsmall cell lung carcinoma: clinical outcomes in 245 subjects in a Japanese multiinstitutional study. Cancer 101(7):1623–1631

    Article  PubMed  Google Scholar 

  7. Hiraoka M, Matsuo Y et al (2007) Stereotactic body radiation therapy (SBRT) for early-stage lung cancer. Cancer Radiother 11(1-2):32–35

    Article  PubMed  CAS  Google Scholar 

  8. Guckenberger M, Wulf J et al (2009) Dose-response relationship for image-guided stereotactic body radiotherapy of pulmonary tumors: relevance of 4D dose calculation. Int J Radiat Oncol Biol Phys 74(1):47–54

    Article  PubMed  Google Scholar 

  9. Kong F-M, Jin J-Y, Bradley J, Martel M (2011) Cancers of the thorax in treatment planning In: Faiz M. Khan (ed) Radiation Oncology. Williams & Wilkins

    Google Scholar 

  10. Kong FM, Ten Haken RK et al (2005) High-dose radiation improved local tumor control and overall survival in patients with inoperable/unresectable non-small-cell lung cancer: long-term results of a radiation dose escalation study. Int J Radiat Oncol Biol Phys 63(2):324–333

    Article  PubMed  Google Scholar 

  11. Rengan R, Rosenzweig KE et al (2004) Improved local control with higher doses of radiation in large-volume stage III non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 60(3):741–747

    Article  PubMed  Google Scholar 

  12. Machtay M, Bae K et al (2010) Higher biologically effective dose of radiotherapy is associated with improved outcomes for locally advanced Non-small cell lung carcinoma treated with chemoradiation: an analysis of the Radiation Therapy Oncology Group. Int J Radiat Oncol Biol Phys 82(1):425–434

    Article  PubMed  Google Scholar 

  13. Cox JD (2012) Are the results of RTOG 0617 mysterious? Int J Radiat Oncol Biol Phys 82(3):1042–1044

    Article  PubMed  Google Scholar 

  14. Budach W, Belka C (2004) Palliative percutaneous radiotherapy in non-small-cell lung cancer. Lung Cancer 45(Suppl 2):S239–S245

    Article  PubMed  Google Scholar 

  15. Marks LB, Yorke ED, Jackson A, Ten Haken RK, Constine LS, Eisbruch A, Bentzen SM, Nam J, Deasy JO (2010) Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys 76(3 Suppl):S10–S19

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yorke ED, Jackson A, Rosenzweig KE, Merrick SA, Gabrys D, Venkatraman ES, Burman CM, Leibel SA, Ling CC (2002) Dose-volume factors contributing to the incidence of radiation pneumonitis in non-small-cell lung cancer patients treated with three-dimensional conformal radiation therapy. Int J Radiat Oncol Biol Phys 54(2):329–339

    Article  PubMed  Google Scholar 

  17. Marks LB, Bentzen SM, Deasy JO, Kong FM, Bradley JD, Vogelius IS, El Naqa I, Hubbs JL, Lebesque JV, Timmerman RD, Martel MK, Jackson A (2010) Radiation dose-volume effects in the lung. Int J Radiat Oncol Biol Phys 76(3 Suppl):S70–S76

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kong FM, Hayman JA, Griffith KA, Kalemkerian GP, Arenberg D, Lyons S, Turrisi A, Lichter A, Fraass B, Eisbruch A, Lawrence TS, Ten Haken RK (2006) Final toxicity results of a radiation-dose escalation study in patients with non-small-cell lung cancer (NSCLC): predictors for radiation pneumonitis and fibrosis. Int J Radiat Oncol Biol Phys 65(4):1075–1086

    Article  PubMed  Google Scholar 

  19. Kupelian PA, Ramsey C, Meeks SL et al (2005) Serial megavoltage CT imaging during external beam radiotherapy for non-small-cell lung cancer: observations on tumor regression during treatment. Int J Radiat Oncol Biol Phys 63(4):1024–1028

    Article  PubMed  Google Scholar 

  20. Bosmans G, van Baardwijk A, Dekker A et al (2006) Intra-patient variability of tumor volume and tumor motion during conventionally fractionated radiotherapy for locally advanced non-small-cell lung cancer: a prospective clinical study. Int J Radiat Oncol Biol Phys 66(3):748–753

    Article  PubMed  Google Scholar 

  21. Fox J, Ford E, Redmond K et al (2009) Quantification of tumor volume changes during radiotherapy for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 74(2):341–348

    Article  PubMed  Google Scholar 

  22. Gay HA, Taylor QQ, Kiriyama F, Dieck GT, Jenkins T, Walker P, Allison RR, Ubezio P (2013) Modeling of non-small cell lung cancer volume changes during CT-based image guided radiotherapy: patterns observed and clinical implications. Comput Math Methods Med 2013:1–13

    Article  Google Scholar 

  23. Kong FM, Frey KA, Quint LE, Ten Haken RK, Hayman JA, Kessler M, Chetty IJ, Normolle D, Eisbruch A, Lawrence TS (2007) A pilot study of [18F]fluorodeoxyglucose positron emission tomography scans during and after radiation-based therapy in patients with non small-cell lung cancer. J Clin Oncol 25(21):3116–3123

    Article  PubMed  Google Scholar 

  24. van Baardwijk A et al (2007) Time trends in the maximal uptake of FDG on PET scan during thoracic radiotherapy. A prospective study in locally advanced non-small cell lung cancer (NSCLC) patients. Radiother Oncol 82(2):145–152

    Article  PubMed  Google Scholar 

  25. Gillham C, Zips D, Pönisch F, Evers C, Enghardt W, Abolmaali N, Zöphel K, Appold S, Hölscher T, Steinbach J, Kotzerke J, Herrmann T, Baumann M (2008) Additional PET/CT in week 5-6 of radiotherapy for patients with stage III non-small cell lung cancer as a means of dose escalation planning? Radiother Oncol 88(3):335–341

    Article  PubMed  Google Scholar 

  26. Choi NC, Chun TT, Niemierko A, Ancukiewicz M, Fidias PM, Kradin RL, Mathisen DJ, Lynch TJ, Fischman AJ (2013) Potential of 18F-FDG PET toward personalized radiotherapy or chemoradiotherapy in lung cancer. Eur J Nucl Med Mol Imaging 40(6):832–841

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Mahasittiwat P, Yuan S, Xie C, Ritter T, Cao Y, Ten Haken RK, Kong FM (2013) Metabolic tumor volume on PET reduced more than gross tumor volume on CT during radiotherapy in patients with non-small cell lung cancer treated with 3DCRT or SBRT. J Radiat Oncol 2(2):191–20231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Feng M et al (2009) Using fluorodeoxyglucose positron emission tomography to assess tumor volume during radiotherapy for non-small-cell lung cancer and its potential impact on adaptive dose escalation and normal tissue sparing. Int J Radiat Oncol Biol Phys 73(4):1228–1234

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kong FM, Ten Haken R et al (2013) A phase II trial of mid-treatment FDG-PET adaptive, individualized radiation therapy plus concurrent chemotherapy in patients with non-small cell lung cancer (NSCLC). J Clin Oncol 31(suppl; abstr 7522)

    Google Scholar 

  30. Robbins ME, Brunso-Bechtold JK, Peiffer AM, Tsien CI, Bailey JE, Marks LB (2012) Imaging radiation-induced normal tissue injury. Radiat Res 177(4):449–466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Boersma LJ, Damen EM, de Boer RW, Muller SH, Valdés-Olmos RA, van Zandwijk N, Lebesque JV (1996) Recovery and overall and local lung function loss 18 months after irradiation for malignant lymphoma. J Clin Oncol 14:1431–1441

    PubMed  CAS  Google Scholar 

  32. Mah K, Van Dyk J, Keane T, Poon PY (1987) Acute radiation-induced pulmonary damage: a clinical study on the response to fractionated radiation therapy. Int J Radiat Oncol Biol Phys 13:179–188

    Article  PubMed  CAS  Google Scholar 

  33. Yankelevitz DF, Henschke CI, Batata M, Kim YS, Chu F (1994) Lung cancer: evaluation with MR imaging during and after irradiation. J Thorac Imaging 9:41–46

    Article  PubMed  CAS  Google Scholar 

  34. Ogasawara N, Suga K, Karino Y, Matsunaga N (2002) Perfusion characteristics of radiation-induced lung on Gd-DTPA-enhanced dynamic magnetic resonance imaging. Invest Radiol 37:448–457

    Article  PubMed  Google Scholar 

  35. Hicks RJ, MacManus MP, Matthews JP, Hogg A, Binns D, Rischin D, Ball DL, Peters LJ (2004) Early FDG-PET imaging after radical radiotherapy for nonsmall-cell lung cancer: inflammatory changes in normal tissues correlate with tumor response and do not confound therapeutic response evaluation. Int J Radiat Oncol Biol Phys 60:412–418

    Article  PubMed  Google Scholar 

  36. Guerrero T, Johnson V, Hart J, Pan T, Khan M, Luo D, Liao Z, Alani J, Stevens C, Komaki R (2007) Radiation pneumonitis: local dose versus [18F]-fluorodeoxyglucose uptake response in irradiated lung. Int J Radiat Oncol Biol Phys 68:1030–1035

    Article  PubMed  CAS  Google Scholar 

  37. Hart JP, McCurdy MR, Ezhil M, Wei W, Khan M, Luo D, Munden RF, Johnson VE, Guerrero TM (2008) Radiation pneumonitis: correlation of toxicity with pulmonary metabolic radiation response. Int J Radiat Oncol Biol Phys 71:967–971

    Article  PubMed  PubMed Central  Google Scholar 

  38. Abdulla S, Salavati A, Saboury B, Basu S, Torigian DA, Alavi A (2014) Quantitative assessment of global lung inflammation following radiation therapy using FDG PET/CT: a pilot study. Eur J Nucl Med Mol Imaging 41(2):350–356

    Article  PubMed  CAS  Google Scholar 

  39. McCurdy M, Bergsma DP, Hyun E, Kim T, Choi E, Castillo R, Castillo E, Guerrero T (2013) The role of lung lobes in radiation pneumonitis and radiation-induced inflammation in the lung: a retrospective study. J Radiat Oncol 2(2):203–208

    Article  PubMed  PubMed Central  Google Scholar 

  40. McCurdy MR, Castillo R, Martinez J, Al Hallack MN, Lichter J, Zouain N, Guerrero T (2012) [18F]-FDG uptake dose-response correlates with radiation pneumonitis in lung cancer patients. Radiother Oncol 104(1):52–57

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mac Manus MP, Ding Z, Hogg A, Herschtal A, Binns D, Ball DL, Hicks RJ (2011) Association between pulmonary uptake of fluorodeoxyglucose detected by positron emission tomography scanning after radiation therapy for non-small-cell lung cancer and radiation pneumonitis. Int J Radiat Oncol Biol Phys 80(5):1365–1371

    Article  PubMed  Google Scholar 

  42. Seppenwoolde Y, De Jaeger K, Boersma LJ, Belderbos JS, Lebesque JV (2004) Regional differences in lung radiosensitivity after radiotherapy for nonsmall-cell lung cancer. Int J Radiat Oncol Biol Phys 60:748–758

    Article  PubMed  Google Scholar 

  43. Marks LB, Fan M, Clough R, Munley MT, Bentel G, Coleman RE, Jaszczak R, Hollis D, Anscher M (2000) Radiation-induced pulmonary injury: symptomatic versus subclinical endpoints. Int J Radiat Biol 76:469–475

    Article  PubMed  CAS  Google Scholar 

  44. Vinogradskiy Y, Castillo R, Castillo E, Tucker SL, Liao Z, Guerrero T, Martel MK (2013) Use of 4-dimensional computed tomography-based ventilation imaging to correlate lung dose and function with clinical outcomes. Int J Radiat Oncol Biol Phys 86(2):366–371

    Article  PubMed  Google Scholar 

  45. Zhong H, Jin JY, Ajlouni M, Movsas B, Chetty IJ (2011) Measurement of regional compliance using 4DCT images for assessment of radiation treatment. Med Phys 38(3):1567–1578

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ding K, Bayouth JE, Buatti JM, Christensen GE, Reinhardt JM (2010) 4DCT-based measurement of changes in pulmonary function following a course of radiation therapy. Med Phys 37(3):1261–1272

    Article  PubMed  PubMed Central  Google Scholar 

  47. De Ruysscher D, Houben A, Aerts HJ, Dehing C, Wanders R, Ollers M, Dingemans AM, Hochstenbag M, Boersma L, Borger J, Dekker A, Lambin P (2009) Increased(18)F-deoxyglucose uptake in the lung during the first weeks of radiotherapy is correlated with subsequent radiation-induced lung toxicity (RILT): a prospective pilot study. Radiother Oncol 91(3):415–420

    Article  PubMed  CAS  Google Scholar 

  48. Li L, Wang W, Stanton P, Bi N, Kong FM (2013) FDG pulmonary uptake changes during and post-radiation therapy compared to pretreatment in predicting radiation-induced lung toxicity in non-small cell lung cancer. Int J Radiat Oncol Biol Phys 87(2):S77

    Article  Google Scholar 

  49. Yuan ST, Frey KA, Gross MD, Hayman JA, Arenberg D, Cai XW, Ramnath N, Hassan K, Moran J, Eisbruch A, Ten Haken RK, Kong FM (2012) Changes in global function and regional ventilation and perfusion on SPECT during the course of radiotherapy in patients with non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 15:82(4)

    Google Scholar 

  50. Kim DN, Nam TK, Choe KS, Choy H (2012) Personalized combined modality therapy for locally advanced non-small cell lung cancer. Cancer Res Treat 44(2):74–84

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ausborn NL, Le QT, Bradley JD, Choy H, Dicker AP, Saha D, Simko J, Story MD, Torossian A, Lu B (2012) Molecular profiling to optimize treatment in non-small cell lung cancer: a review of potential molecular targets for radiation therapy by the translational research program of the radiation therapy oncology group. Int J Radiat Oncol Biol Phys 83(4):e453–e464

    Article  PubMed  CAS  Google Scholar 

  52. Salgia R, Hensing T, Campbell N, Salama AK, Maitland M, Hoffman P, Villaflor V, Vokes EE (2011) Personalized treatment of lung cancer. Semin Oncol 38(2):274–283

    Article  PubMed  CAS  Google Scholar 

  53. Strimbu K, Tavel JA (2010) What are biomarkers? Curr Opin HIV AIDS 5(6):463–466

    Article  PubMed  PubMed Central  Google Scholar 

  54. Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69(3):89–95

    Article  Google Scholar 

  55. Yuan X, Liao Z, Liu Z, Wang LE, Tucker SL, Mao L, Wang XS, Martel M, Komaki R, Cox JD, Milas L, Wei Q (2009) Single nucleotide polymorphism at rs1982073:T869C of the TGFbeta 1 gene is associated with the risk of radiation pneumonitis in patients with non-small-cell lung cancer treated with definitive radiotherapy. J Clin Oncol 27(20):3370–3378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Kelsey CR, Jackson IL, Langdon S, Owzar K, Hubbs J, Vujaskovic Z, Das S, Marks LB (2013) Analysis of single nucleotide polymorphisms and radiation sensitivity of the lung assessed with an objective radiologic endpoin. Clin Lung Cancer 14(3):267–274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Tucker SL, Li M, Xu T, Gomez D, Yuan X, Yu J, Liu Z, Yin M, Guan X, Wang LE, Wei Q, Mohan R, Vinogradskiy Y, Martel M, Liao Z (2013) Incorporating single-nucleotide polymorphisms into the Lyman model to improve prediction of radiation pneumonitis. Int J Radiat Oncol Biol Phys 85(1):251–257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Vinogradskiy Y, Tucker SL, Bluett JB, Wages CA, Liao Z, Martel MK (2012) Prescribing radiation dose to lung cancer patients based on personalized toxicity estimates. J Thorac Oncol 7(11):1676–1682

    Article  PubMed  CAS  Google Scholar 

  59. Wang W et al (2012) 11 Single nucleotide polymorphisms in dna repair genes may be associated with survival in patients with non-small cell lung cancer treated with definitive radiotherapy, oral abstract, Chicago Multidisciplinary Symposium in Thoracic Oncology, Chicago, 06 Sept 2012.

    Google Scholar 

  60. Landi MT et al (2010) MicroRNA expression differentiates histology and predicts survival of lung cancer. Clin Cancer Res 16(2):430–441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Yu SL et al (2008) MicroRNA signature predicts survival and relapse in lung cancer. Cancer Cell 13(1):48–57

    Article  PubMed  CAS  Google Scholar 

  62. Vosa U et al (2011) Identification of miR-374a as a prognostic marker for survival in patients with early-stage nonsmall cell lung cancer. Genes Chromosomes Cancer 50(10):812–822

    Article  PubMed  CAS  Google Scholar 

  63. Hermeking H (2010) The miR-34 family in cancer and apoptosis. Cell Death Differ 17(2):193–199

    Article  PubMed  CAS  Google Scholar 

  64. Sen CK et al (2009) Micromanaging vascular biology: tiny microRNAs play big band. J Vasc Res 46(6):527–540

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Yang C et al (2012) Epigenetic silencing of miR-130b in ovarian cancer promotes the development of multidrug resistance by targeting colony-stimulating factor 1. Gynecol Oncol 124(2):325–334

    Article  PubMed  CAS  Google Scholar 

  66. Franchina T, Amodeo V, Bronte G, Savio G, Ricciardi GR, Picciotto M, Russo A, Giordano A, Adamo V (2014) Circulating miR-22, miR-24 and miR-34a as novel predictive biomarkers to pemetrexed-based chemotherapy in advanced non-small cell lung cancer. J Cell Physiol 229(1):97–99

    PubMed  CAS  Google Scholar 

  67. Bi N, Schipper MJ, Stanton P, Wang W, Kong FM (2013) Serum miRNA signature to identify a patient’s resistance to high-dose radiation therapy for unresectable non-small cell lung cancer. J Clin Oncol 31(suppl; abstr 7580)

    Google Scholar 

  68. Bi N, Stanton P, Wang W, Kong FM (2013) Serum MicroRNA as a predictive marker for radiation pneumonitis in patients with inoperable/unresectable non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys 87(Issue 2):S93

    Article  Google Scholar 

  69. Golden EB, Demaria S, Schiff PB, Chachoua A, Formenti SC (2013) An abscopal response to radiation and ipilimumab in a patient with metastatic non-small cell lung cancer. Cancer Immunol Res 1(6):365–372

    Article  PubMed  PubMed Central  Google Scholar 

  70. Ludgate CM (2012) Optimizing cancer treatments to induce an acute immune response: radiation Abscopal effects, PAMPs, and DAMPs. Clin Cancer Res 18(17):4522–4525

    Article  PubMed  CAS  Google Scholar 

  71. Kong F, Jirtle RL, Huang DH, Clough RW, Anscher MS (1999) Plasma transforming growth factor-beta1 level before radiotherapy correlates with long term outcome of patients with lung carcinoma. Cancer 86(9):1712–1719

    Article  PubMed  CAS  Google Scholar 

  72. Zhao L, Ji W, Zhang L, Ou G, Feng Q, Zhou Z, Lei M, Yang W, Wang L (2010) Changes of circulating transforming growth factor-beta1 level during radiation therapy are correlated with the prognosis of locally advanced non-small cell lung cancer. J Thorac Oncol 5(4):521–525

    Article  PubMed  Google Scholar 

  73. Ujiie H, Tomida M, Akiyama H, Nakajima Y, Okada D, Yoshino N, Takiguchi Y, Tanzawa H (2012) Serum hepatocyte growth factor and interleukin-6 are effective prognostic markers for non-small cell lung cancer. Anticancer Res 32(8):3251–3258

    PubMed  CAS  Google Scholar 

  74. Chang CH, Hsiao CF, Yeh YM, Chang GC, Tsai YH, Chen YM, Huang MS, Chen HL, Li YJ, Yang PC, Chen CJ, Hsiung CA, Su WC (2013) Circulating interleukin-6 level is a prognostic marker for survival in advanced nonsmall cell lung cancer patients treated with chemotherapy. Int J Cancer 132(9):1977–1985

    Article  PubMed  CAS  Google Scholar 

  75. Rube CE, Wilfert F, Uthe D, Konig J, Liu L et al (2004) Increased expression of pro-inflammatory cytokines as a cause of lung toxicity after combined treatment with gemcitabine and thoracic irradiation. Radiother Oncol 72:231–241

    Article  PubMed  CAS  Google Scholar 

  76. Anscher MS, Kong FM, Andrews K, Clough R, Marks LB et al (1998) Plasma transforming growth factor beta1 as a predictor of radiation pneumonitis. Int J Radiat Oncol Biol Phys 41:1029–1035

    Article  PubMed  CAS  Google Scholar 

  77. Arpin D, Perol D, Blay JY, Falchero L, Claude L et al (2005) Early variations of circulating interleukin-6 and interleukin-10 levels during thoracic radiotherapy are predictive for radiation pneumonitis. J Clin Oncol 23:8748–8875

    Article  PubMed  CAS  Google Scholar 

  78. Chen Y, Hyrien O, Williams J, Okunieff P, Smudzin T et al (2005) Interleukin (IL)-1A and IL-6: applications to the predictive diagnostic testing of radiation pneumonitis. Int J Radiat Oncol Biol Phys 62:260–266

    Article  PubMed  CAS  Google Scholar 

  79. Stenmark MH, Cai XW, Shedden K, Hayman JA, Yuan S, Ritter T, Ten Haken RK, Lawrence TS, Kong FM (2012) Combining physical and biologic parameters to predict radiation-induced lung toxicity in patients with non-small-cell lung cancer treated with definitive radiation therapy. Int J Radiat Oncol Biol Phys 84(2):e217–e222

    Article  PubMed  PubMed Central  Google Scholar 

  80. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, Zegers CM, Gillies R, Boellard R, Dekker A, Aerts HJ (2012) Radiomics: extractingmore information from medical images using advanced feature analysis. Eur J Cancer 48(4):441–446

    Article  PubMed  PubMed Central  Google Scholar 

  81. Davnall F, Yip CS, Ljungqvist G, Selmi M, Ng F, Sanghera B, Ganeshan B, Miles KA, Cook GJ, Goh V (2012) Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights Imaging 3(6):573–589

    Article  PubMed  PubMed Central  Google Scholar 

  82. Srinivasan GN, Shobha G (2008) Statistical texture analysis. Proc World Acad Sci Eng Technol 36:1264–1269

    Google Scholar 

  83. Ganeshan B, Abaleke S, Young RC, Chatwin CR, Miles KA (2010) Texture analysis of non-small cell lung cancer on unenhanced computed tomography: initial evidence for a relationship with tumor glucose metabolism and stage. Cancer Imaging 10:137–143

    Article  PubMed  PubMed Central  Google Scholar 

  84. Al-Kadi OS (2010) Assessment of texture measures susceptibility to noise in conventional and contrast enhanced computed tomography lung tumour images. Comput Med Imaging Graph 34(6):494–503

    Article  PubMed  Google Scholar 

  85. Kido S, Kuriyama K, Higashiyama M, Kasugai T, Kuroda C (2003) Fractal analysis of internal and peripheral textures of small peripheral bronchogenic carcinomas in thin-section computed tomography: comparison of bronchioloalveolar cell carcinomas with nonbronchioloalveolar cell carcinomas. J Comput Assist Tomogr 27(1):56–61

    Article  PubMed  Google Scholar 

  86. Rutman AM, Kuo MD (2009) Radiogenomics: creating a link between molecular diagnostics and diagnostic imaging. Eur J Radiol 70:232–241

    Article  PubMed  Google Scholar 

  87. Kuo MD, Gollub J, Sirlin CB, Ooi C, Chen X (2007) Radiogenomic analysis to identify imaging phenotypes associated with drug response gene expression programs in hepatocellular carcinoma. J Vasc Interv Radiol 18:821–831

    Article  PubMed  Google Scholar 

  88. Paesmans M, Berghmans T, Dusart M, Garcia C, Hossein-Foucher C, Lafitte JJ, Mascaux C, Meert AP, Roelandts M, Scherpereel A, Terrones Munoz V, Sculier JP, European Lung Cancer Working Party, and on behalf of the IASLC Lung Cancer Staging Project (2010) Primary tumor standardized uptake value measured on fluorodeoxyglucose positron emission tomography is of prognostic value for survival in non-small cell lung cancer: update of a systematic review and meta-analysis by the European Lung Cancer Working Party for the International Association for the Study of Lung Cancer Staging Project. J Thorac Oncol 5(5):612–9

    Article  PubMed  Google Scholar 

  89. El Naqa I, Grigsby P, Apte A et al (2009) Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recognit 42(6):1162–1171

    Article  PubMed  PubMed Central  Google Scholar 

  90. Tixier F, Le Rest CC, Hatt M et al (2011) Intratumor heterogeneity characterized by textural features on baseline 18 F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med 52(3):369–378

    Article  PubMed  PubMed Central  Google Scholar 

  91. Petit SF, van Elmpt WJ, Oberije CJ, Vegt E, Dingemans AM, Lambin P, Dekker AL, De Ruysscher D (2011) [18F]fluorodeoxyglucose uptake patterns in lung before radiotherapy identify areas more susceptible to radiation-induced lung toxicity in non-small-cell lung cancer patients. Int J Radiat Oncol Biol Phys 81(3):698–705

    Article  PubMed  Google Scholar 

  92. Castillo R, Pham N, Ansari S, Meshkov D, Castillo S, Li M, Olanrewaju A, Hobbs B, Castillo E, Guerrero T (2014) Pre-radiotherapy FDG PET predicts radiation pneumonitis in lung cancer. Radiat Oncol 9(1):74

    Article  PubMed  PubMed Central  Google Scholar 

  93. Jin JY, Kong FM, Chetty IJ et al (2010) Impact of fraction size on lung radiation toxicity—hypofractionation may be beneficial in dose escalation of radiotherapy for lung cancer. Int J Radiat Oncol Biol Phys 76:782–788

    Article  PubMed  Google Scholar 

  94. Gay HA, Jin JY, Chang AJ et al (2013) Utility of normal tissue-to-tumor a/b ratio when evaluating isodoses of isoeffective radiation therapy treatment plans. Int J Radiat Oncol Biol Phys 85:e81–e87

    Article  PubMed  Google Scholar 

  95. Myerson RJ (2011) Normal tissue dose conformality measures to guide radiotherapy fractionation decisions. Med Phys 38:1799–1805

    Article  PubMed  Google Scholar 

  96. Xiao N, Kong FM, Chetty IJ, Burmeister J, Joiner M, Jin JY (2013) Toward individualized fractionation schedule for lung cancer radiation therapy. Int J Radiat Oncol Biol Phys 87(2):S542

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Ming (Spring) Kong M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jin, JY., Kong, FM. (2016). Personalized Radiation Therapy (PRT) for Lung Cancer. In: Ahmad, A., Gadgeel, S. (eds) Lung Cancer and Personalized Medicine: Novel Therapies and Clinical Management. Advances in Experimental Medicine and Biology, vol 890. Springer, Cham. https://doi.org/10.1007/978-3-319-24932-2_10

Download citation

Publish with us

Policies and ethics