Skip to main content

Quantum Acoustics with Surface Acoustic Waves

  • Chapter
  • First Online:

Part of the book series: Quantum Science and Technology ((QST))

Abstract

It has recently been demonstrated that surface acoustic waves (SAWs) can interact with superconducting qubits at the quantum level. SAW resonators in the GHz frequency range have also been found to have low loss at temperatures compatible with superconducting quantum circuits. These advances open up new possibilities to use the phonon degree of freedom to carry quantum information. In this chapter, we give a description of the basic SAW components needed to develop quantum circuits, where propagating or localized SAW-phonons are used both to study basic physics and to manipulate quantum information. Using phonons instead of photons offers new possibilities which make these quantum acoustic circuits very interesting. We discuss general considerations for SAW experiments at the quantum level and describe experiments both with SAW resonators and with interaction between SAWs and a qubit. We also discuss several potential future developments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. S. Haroche, J.M. Raimond, Exploring the Quantum (Oxford University Press, Oxford, 2006)

    Book  MATH  Google Scholar 

  2. R. Miller, T.E. Northup, K.M. Birnbaum, A. Boca, A.D. Boozer, H.J. Kimble, J. Phys. B: At. Mol. Opt. Phys. 38, S551 (2005)

    Google Scholar 

  3. A. Wallraff, D.I. Schuster, A. Blais, L. Frunzio, R.S. Huang, J. Majer, S. Kumar, S.M. Girvin, R.J. Schoelkopf, Nature 431(7005), 162 (2004)

    Article  ADS  Google Scholar 

  4. R. Schoelkopf, S. Girvin, Nature 451(7179), 664 (2008)

    Article  ADS  Google Scholar 

  5. J. Koch, T.M. Yu, J. Gambetta, A.A. Houck, D.I. Schuster, J. Majer, A. Blais, M.H. Devoret, S.M. Girvin, R.J. Schoelkopf, Phys. Rev. A 76(4), 042319 (2007)

    Article  ADS  Google Scholar 

  6. H. Zheng, D.J. Gauthier, H.U. Baranger, Phys. Rev. A 82, 063816 (2010)

    Article  ADS  Google Scholar 

  7. H. Zheng, D.J. Gauthier, H.U. Baranger, Phys. Rev. Lett. 111, 090502 (2013)

    Article  ADS  Google Scholar 

  8. D. Valente, Y. Li, J.P. Poizat, J.M. Gerard, L.C. Kwek, M.F. Santos, A. Auffeves, New J. Phys. 14, 083029 (2012)

    Google Scholar 

  9. I.C. Hoi, C.M. Wilson, G. Johansson, J. Lindkvist, B. Peropadre, T. Palomaki, P. Delsing, New J. Phys. 15, 025011 (2013)

    Article  ADS  Google Scholar 

  10. J.D. Teufel, T. Donner, M.A. Castellanos-Beltran, J.W. Harlow, K.W. Lehnert, Nat. Nanotechnol. 4(12), 820 (2009)

    Article  ADS  Google Scholar 

  11. M.D. LaHaye, J. Suh, P.M. Echternach, K.C. Schwab, M.L. Roukes, Nature 459(7249), 960 (2009)

    Article  ADS  Google Scholar 

  12. A.D. O’Connell, M. Hofheinz, M. Ansmann, R.C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J.M. Martinis, A.N. Cleland, Nature 464(7289), 697 (2010)

    Article  ADS  Google Scholar 

  13. J.M. Pirkkalainen, S.U. Cho, J. Li, G.S. Paraoanu, P.J. Hakonen, M.A. Sillanpää, Nature 494(7436), 211 (2013)

    Article  ADS  Google Scholar 

  14. S. Datta, Surface Acoustic Wave Devices (Prentice-Hall, Englewood Cliffs, 1986)

    Google Scholar 

  15. D. Morgan, Surface Acoustic Wave Filters, 2nd edn. (Academic Press, Waltham, 2007)

    Google Scholar 

  16. C. Campbell, Surface Acoustic Wave Devices for Mobile and Wireless Communications (Academic Press, New York, 1998)

    Google Scholar 

  17. C. Barnes, J. Shilton, A. Robinson, Phys. Rev. B 62(12), 8410 (2000)

    Article  ADS  Google Scholar 

  18. S. Hermelin, S. Takada, M. Yamamoto, S. Tarucha, A.D. Wieck, L. Saminadayar, C. Bäuerle, T. Meunier, Nature 477(7365), 435 (2011)

    Article  ADS  Google Scholar 

  19. R.P.G. McNeil, M. Kataoka, C.J.B. Ford, C.H.W. Barnes, D. Anderson, G.A.C. Jones, I. Farrer, D.A. Ritchie, Nature 477(7365), 439 (2011)

    Article  ADS  Google Scholar 

  20. E.B. Magnusson, B.H. Williams, R. Manenti, M.S. Nam, A. Nersisyan, M.J. Peterer, A. Ardavan, P.J. Leek, Appl. Phys. Lett. 106, 063509 (2015)

    Article  ADS  Google Scholar 

  21. M.V. Gustafsson, T. Aref, A.F. Kockum, M.K. Ekström, G. Johansson, P. Delsing, Science 346(6206), 207 (2014)

    Article  ADS  Google Scholar 

  22. J.W. Strutt, Lord Rayleigh, Proc. Lond. Math. Soc. 17, 4 (1885)

    Google Scholar 

  23. J. Pedros, L. Garcia-Gancedo, C. Ford, C. Barnes, J. Griffiths, G. Jones, A. Flewitt, J. Appl. Phys. 110, 103501 (2011)

    Article  ADS  Google Scholar 

  24. O. Madelung, U. Rössler, M. Schulz (eds.), II–VI and I–VII compounds; semimagnetic compounds, Landolt-Börnstein—Group III Condensed Matter (Springer, Berlin, 1999)

    Google Scholar 

  25. A.J. Slobodnik, in Acoustic Surface Waves, ed. by A.A. Oliner (Springer, Heidelberg, 1978), p. 225

    Google Scholar 

  26. J.S. Browder, S.S. Ballard, Appl. Opt. 16, 3214 (1977)

    Article  ADS  Google Scholar 

  27. T.F. Smith, G. White, J. Phys. C: Solid State Phys. 8, 2031 (1975)

    Article  ADS  Google Scholar 

  28. K. Hashimoto, Surface Acoustic Wave Devices in Telecommunications: Modelling and Simulation (Springer, Heidelberg, 2000)

    Book  Google Scholar 

  29. B. Yates, R.F. Cooper, M.M. Kreitman, Phys. Rev. B 4, 1314 (1971)

    Article  ADS  Google Scholar 

  30. G.K. White, P.J. Meeson, Experimental Techniques in Low-Temperature Physics, 4th edn. (Clarendon Press, Oxford, 2002)

    Google Scholar 

  31. W.D. Hunt, R.L. Miller, B.J. Hunsinger, J. Appl. Phys. 60, 3532 (1986)

    Article  ADS  Google Scholar 

  32. W.D. Hunt, Y. Kim, F.M. Fliegel, J. Appl. Phys. 69(4), 1936 (1991)

    Article  ADS  Google Scholar 

  33. J.M.M. de Lima, F. Alsina, W. Seidel, P.V. Santos, J. Appl. Phys. 94, 7848 (2003)

    Article  ADS  Google Scholar 

  34. A. Weber, G. Weiss, S. Hunklinger, in IEEE 1991 Ultrasonics Symposium (IEEE, 1991), pp. 363–366

    Google Scholar 

  35. D. Leibfried, R. Blatt, C. Monroe, D. Wineland, Rev. Mod. Phys. 75, 281 (2003)

    Article  ADS  Google Scholar 

  36. S. Haroche, Rev. Mod. Phys. 85, 1083 (2013)

    Article  ADS  Google Scholar 

  37. H. Walther, B.T.H. Varcoe, B.G. Englert, T. Becker, Rep. Prog. Phys. 69, 1325 (2006)

    Article  ADS  Google Scholar 

  38. G. Kirchmair, B. Vlastakis, Z. Leghtas, S. Nigg, H. Paik, E. Ginossar, M. Mirrahimi, L. Frunzio, S. Girvin, R. Schoelkopf, Nature 495, 205 (2013)

    Article  ADS  Google Scholar 

  39. R. Barends, J. Kelly, A. Megrant, D. Sank, E. Jeffrey, Y. Chen, Y. Yin, B. Chiaro, J. Mutus, C. Neill, P. O’Malley, P. Roushan, J. Wenner, T.C. White, A.N. Cleland, J.M. Martinis, Phys. Rev. Lett. 111, 080502 (2013)

    Article  ADS  Google Scholar 

  40. A.F. Kockum, P. Delsing, G. Johansson, Phys. Rev. A 90, 013837 (2014)

    Article  ADS  Google Scholar 

  41. H.J. Carmichael, Statistical Methods in Quantum Optics 1 (Springer, Berlin, 1999)

    Book  MATH  Google Scholar 

  42. C.W. Gardiner, P. Zoller, Quantum Noise, 3rd edn. (Springer, Berlin, 2004)

    MATH  Google Scholar 

  43. G. Lindblad, Commun. Math. Phys. 48, 119 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. W.E. Lamb, R.C. Retherford, Phys. Rev. 72, 241 (1947)

    Article  ADS  Google Scholar 

  45. H.A. Bethe, Phys. Rev. 72, 339 (1947)

    Article  ADS  MATH  Google Scholar 

  46. E. Ash, in G-MTT 1970 International Microwave Symposium, vol. 70 (IEEE, 1970), pp. 385–386

    Google Scholar 

  47. D.L.T. Bell Jr., R.C.M. Li, Proc. IEEE 64(5), 711 (1976)

    Article  Google Scholar 

  48. T. Bristol, W. Jones, P. Snow, W. Smith, in 1972 Ultrasonics Symposium (IEEE, 1972), pp. 343–345

    Google Scholar 

  49. M. Sandberg, C.M. Wilson, F. Persson, T. Bauch, G. Johansson, V. Shumeiko, T. Duty, P. Delsing, Appl. Phys. Lett. 92, 203501 (2008)

    Article  ADS  Google Scholar 

  50. M. Pierre, I.M. Svensson, S.R. Sathyamoorthy, G. Johansson, P. Delsing, Appl. Phys. Lett. 104(23), 232604 (2014)

    Google Scholar 

  51. R.W. Boyd, Nonlinear Optics, 3rd edn. (Academic Press, Orlando, 2008)

    Google Scholar 

  52. T. Niemczyk, F. Deppe, H. Huebl, E.P. Menzel, F. Hocke, M.J. Schwarz, J.J. Garcia-Ripoll, D. Zueco, T. Hummer, E. Solano, A. Marx, R. Gross, Nat. Phys. 6, 772 (2010)

    Article  Google Scholar 

  53. D. Ballester, G. Romero, J.J. Garcia-Ripoll, F. Deppe, E. Solano, Phys. Rev. X 2(2), 021007 (2012)

    Google Scholar 

  54. M. Büttiker, Phys. Rev. B (Condensed Matter) 36(7), 3548 (1987)

    Google Scholar 

  55. V. Bouchiat, D. Vion, P. Joyez, D. Esteve, M.H. Devoret, Phys. Scr. T 76, 165 (1998)

    Article  ADS  Google Scholar 

  56. F. Yan, S. Gustavsson, A. Kamal, J. Birenbaum, A.P. Sears, D. Hover, T.J.Gudmundsen, J.L. Yoder, T.P. Orlando, J. Clarke, A.J. Kerman, W.D. Oliver The Flux Qubit Revisited (2015). arXiv:1508.06299

  57. M. Göppl, A. Fragner, M. Baur, R. Bianchetti, S. Filipp, J.M. Fink, P.J. Leek, G. Puebla, L. Steffen, A. Wallraff, J. Appl. Phys. 104(11), 113904 (2008)

    Article  ADS  Google Scholar 

  58. M. Aspelmeyer, T.J. Kippenberg, in Cavity Optomechanics, ed. by M. Aspelmeyer, T.J. Kippenberg, F. Marquardt (Springer, Berlin, 2014)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Swedish Research Council, the European Research Council, the Knut and Alice Wallenberg Foundation, the UK Engineering and Physical Sciences Research Council. We also acknowledge support from the People Programme (Marie Curie Actions) and the FET-project SCALEQIT of the European Unions Seventh Framework Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Delsing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aref, T. et al. (2016). Quantum Acoustics with Surface Acoustic Waves. In: Hadfield, R., Johansson, G. (eds) Superconducting Devices in Quantum Optics. Quantum Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-24091-6_9

Download citation

Publish with us

Policies and ethics