Skip to main content

Waveguide Integrated Superconducting Nanowire Single Photon Detectors on Silicon

  • Chapter
  • First Online:
Superconducting Devices in Quantum Optics

Part of the book series: Quantum Science and Technology ((QST))

  • 3269 Accesses

Abstract

Superconducting nanowire single-photon detectors integrated with nanophotonic waveguides hold tremendous potential for the development of silicon based quantum photonic devices. In this chapter we present an overview of recent efforts using scalable fabrication procedures to realize waveguide-coupled single-photon detectors. We will show how high detection efficiency, low noise and high timing resolution are achieved simultaneously over a large range of wavelengths. These features can be exploited, for example, in photon buffering and optical time domain reflectometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.L. O’Brien, A. Furusawa, J. Vuckovic, Photonic quantum technologies. Nat. Photon. 3, 687 (2009)

    Google Scholar 

  2. R.H. Hadfield, Single-photon detectors for optical quantum information applications. Nat. Photon. 3, 696 (2009)

    Google Scholar 

  3. J.L. O’Brien, Optical quantum computing. Science 318, 1567 (2007)

    Article  ADS  Google Scholar 

  4. A. Alduino, M. Paniccia, Interconnects: wiring electronics with light. Nat. Photonics 1, 153 (2007)

    Article  ADS  Google Scholar 

  5. R. Kirchain, L. Kimerling, A roadmap for nanophotonics. Nat. Photonics 1, 303 (2007)

    Article  ADS  Google Scholar 

  6. D.A.B. Miller, Rationale and challenges for optical interconnects to electronic chips. Proc. IEEE 88, 728 (2000)

    Article  Google Scholar 

  7. G. Guillot, L. Pavesi, Optical Interconnects (Springer, Berlin, 2006)

    Google Scholar 

  8. D. Dai, J. Bauters, J.E. Bowers, Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction. Light: Sci. Appl. 1, e1 (2012)

    Google Scholar 

  9. D. Bonneau et al., Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits. New J. Phys. 14, 045003 (2012)

    Article  ADS  Google Scholar 

  10. E.A.J. Marcatili, Dielectric rectangular waveguide and directional coupler for integrated optics. Bell Syst. Tech. J. 48, 2071 (1969)

    Article  Google Scholar 

  11. X. Xu et al., Near-infrared Hong-Ou-Mandel interference on a silicon quantum photonic chip. Opt. Express 21, 5014 (2013)

    Article  ADS  Google Scholar 

  12. M. Poot, H.X. Tang, Broadband nanoelectromechanical phase shifting of light on a chip. Appl. Phys. Lett. 104, 061101 (2014)

    Article  ADS  Google Scholar 

  13. A. Politi, M.J. Cryan, J.G. Rarity, S. Yu, J.L. O’Brien, Silica on silicon waveguide quantum circuits. Science 320, 646 (2008)

    Article  ADS  Google Scholar 

  14. J.C.F. Matthews et al., Manipulation of multiphoton entanglement in waveguide quantum circuits. Nat. Photon. 3, 346 (2009)

    Google Scholar 

  15. P.J. Shadbolt et al., Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit. Nat. Photon. 6, 45 (2012)

    Google Scholar 

  16. M.D. Eisaman et al., Invited review article: Single-photon sources and detectors. Rev. Sci. Instrum. 82, 071101 (2011)

    Article  ADS  Google Scholar 

  17. C. Gobby, Z.L. Yuan, A.J. Shields, Quantum key distribution over 122 km of standard telecom fiber. Appl. Phys. Lett. 84, 3762 (2004)

    Article  ADS  Google Scholar 

  18. A.J. Shields, Semiconductor quantum light sources. Nat. Photon. 1, 215 (2007)

    Google Scholar 

  19. B. Lounis, M. Orrit, Single-photon sources. Rep. Prog. Phys. 68, 1129 (2005)

    Article  ADS  Google Scholar 

  20. P. Eraerds et al., Photon counting OTDR: advantages and limitations. J. Lightwave Technol. 28, 952 (2010)

    Article  ADS  Google Scholar 

  21. W. Becker et al., Fluorescence lifetime imaging by time-correlated single-photon counting. Microsc. Res. Tech. 63, 58 (2004)

    Article  Google Scholar 

  22. G.N. Gol’tsman et al., Picosecond superconducting single-photon optical detector. Appl. Phys. Lett. 79, 705 (2001)

    Article  ADS  Google Scholar 

  23. C.N. Natarajan, M.G. Tanner, R.H. Hadfield, Superconducting nanowire single-photon detectors: physics and applications. Supercond. Sci. Technol. 25, 063001 (2012)

    Article  ADS  Google Scholar 

  24. F. Marsili et al., Efficient single photon detection from 500 nm to 5 \(\upmu {\rm {m}}\) wavelength. Nano Lett. 12, 4799 (2012)

    Article  ADS  Google Scholar 

  25. C. Zinoni et al., Single-photon experiments at telecommunication wavelengths using nanowire superconducting detectors. Appl. Phys. Lett. 91, 031106 (2007)

    Article  ADS  Google Scholar 

  26. X.L. Hu, C.W. Holzwarth, D. Masciarelli, E.A. Dauler, K.K. Berggren, Efficiently coupling light to superconducting nanowire single-photon detectors. IEEE Trans. Appl. Supercond. 19, 336 (2009)

    Article  ADS  Google Scholar 

  27. J.P. Sprengers et al., Waveguide superconducting single-photon detectors for integrated quantum photonic circuits. Appl. Phys. Lett. 99, 181110 (2011)

    Article  ADS  Google Scholar 

  28. T. Gerrits et al., On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information processing. Phys. Rev. A 84, 060301 (2011)

    Article  ADS  Google Scholar 

  29. W.H.P. Pernice et al., High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat. Commun. 3, 1325 (2012)

    Article  ADS  Google Scholar 

  30. C. Schuck, W.H.P. Pernice, H.X. Tang, NbTiN superconducting nanowire detectors for visible and telecom wavelengths single photon counting on \({\rm {Si}}_{3}{\rm {N}}_{4}\) photonic circuits. Appl. Phys. Lett. 102, 051101 (2013)

    Article  ADS  Google Scholar 

  31. C. Schuck, W.H.P. Pernice, H.X. Tang, Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate. Sci. Rep. 3, 1893 (2013)

    Article  ADS  Google Scholar 

  32. A. Verevkin et al., Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range. Appl. Phys. Lett. 80, 4687 (2002)

    Article  ADS  Google Scholar 

  33. F. Marsili et al., Detecting single infrared photons with 93% system efficiency. Nat. Photonics 7, 210 (2013)

    Article  ADS  Google Scholar 

  34. A. Engel et al., Tantalum nitride superconducting single-photon detectors with low cut-off energy. Appl. Phys. Lett. 100, 062061 (2012)

    Article  Google Scholar 

  35. A. Annunziata et al., Niobium superconducting nanowire single-photon detectors. IEEE Trans. Appl. Supercond. 19, 327 (2009)

    Article  ADS  Google Scholar 

  36. S.N. Dorenbos et al., Low noise superconducting single photon detectors on silicon. Appl. Phys. Lett. 93, 131101 (2008)

    Article  ADS  Google Scholar 

  37. M.G. Tanner et al., Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon. Appl. Phys. Lett. 96, 221109 (2010)

    Article  ADS  Google Scholar 

  38. R. Sobolewski et al., Ultrafast superconducting single-photon optical detectors and their applications. IEEE Trans. Appl. Supercond. 13, 1151 (2003)

    Article  Google Scholar 

  39. V.B. Verma et al., Superconducting nanowire single photon detectors fabricated from amorphous \({\rm {Mo}}_{0.75}{\rm {Ge}}_{0.25}\) thin film. Appl. Phys. Lett. 102, 022602 (2014)

    Article  ADS  Google Scholar 

  40. L. Pavesi, D.J. Lockwood, Silicon Photonics (Springer, Berlin, 2004)

    Google Scholar 

  41. M. Bruel, Silicon on insulator material technology. Electron. Lett. 31, 1201 (1995)

    Article  Google Scholar 

  42. M.A. Green, M.J. Keevers, Optical properties of intrinsic silicon at 300 K. Prog. Photovolt.: Res. Appl. 3, 189 (1995)

    Article  Google Scholar 

  43. G.K. Celler, S. Cristoloveanu, Frontiers of silicon-on-insulator. J. Appl. Phys. 93, 4955 (2003)

    Article  ADS  Google Scholar 

  44. M. Bruel, B. Aspar, A.-J. Auberton-Herve, Smart-Cut: a new silicon on insulator material technology based on hydrogen implantation and wafer bonding. Jpn. J. Appl. Phys. 36, 1636 (1997)

    Article  ADS  Google Scholar 

  45. T. Baehr-Jones et al., High-Q optical resonators in silicon-on-insulator-based slot waveguides. Appl. Phys. Lett. 86, 081101 (2005)

    Article  ADS  Google Scholar 

  46. M. Soltani, S. Yegnanarayanan, A. Adibi, Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics. Opt. Express 15, 4694 (2007)

    Article  ADS  Google Scholar 

  47. D. Taillaert et al., An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers. IEEE J. Quantum Electron. 38, 949 (2002)

    Article  ADS  Google Scholar 

  48. C. Schuck et al., Matrix of integrated superconducting single-photon detectors with high timing resolution. IEEE Trans. Appl. Supercond. 23, 2201007 (2013)

    Article  Google Scholar 

  49. W. Stutius, W. Streifer, Silicon nitride films on silicon for optical waveguides. Appl. Opt. 16, 3218 (1977)

    Article  ADS  Google Scholar 

  50. S.V. Deshpande, E. Gulari, S.W. Brown, S.C. Rand, Optical properties of silicon nitride films deposited by hot lament chemical vapor deposition. J. Appl. Phys. 77, 6534 (1995)

    Article  ADS  Google Scholar 

  51. S. Zheng, H. Chen, A. Poon, Microring-resonator cross-connect filters in silicon nitride: rib waveguide dimensions dependence. IEEE J. Sel. Top. Quantum Electron. 12, 1380 (2006)

    Article  Google Scholar 

  52. F. Morichetti, A. Melloni, M. Martinelli, R.G. Heideman, A. Leinse, D.H. Geuzebroek, A. Borreman, Box-shaped dielectric waveguides: a new concept in integrated optics. J. Lightwave Technol. 25, 2579 (2007)

    Article  ADS  Google Scholar 

  53. A. Gondarenko, J.S. Levy, M. Lipson, High confinement micron-scale silicon nitride high Q ring resonator. Opt. Express 17, 11366 (2009)

    Article  ADS  Google Scholar 

  54. N. Gruhler et al., High-quality \({\rm {Si}}_{3}{\rm {N}}_{4}\) circuits as a platform for graphene-based nanophotonic devices. Opt. Express 21, 31678 (2013)

    Article  ADS  Google Scholar 

  55. M.-C. Tien et al., Ultra-high quality factor planar Si3N4 ring resonators on Si substrates. Opt. Express 19, 13551 (2011)

    Article  ADS  Google Scholar 

  56. G.T. Reed et al., Silicon optical modulators. Nat. Photonics 4, 518 (2010)

    Article  ADS  Google Scholar 

  57. C. Xiong, W.H.P. Pernice, H.X. Tang, Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing. Nano Lett. 12, 3562 (2012)

    Article  ADS  Google Scholar 

  58. A.B. Matsko, Practical Applications of Microresonators in Optics and Photonics (CRC Press, Florida, 2009)

    Book  Google Scholar 

  59. T.J. Kippenberg, K.J. Vahala, Cavity opto-mechanics. Opt. Express 15, 17172 (2007)

    Article  ADS  Google Scholar 

  60. K. Hennessy et al., Quantum nature of a strongly coupled single quantum dot-cavity system. Nature 445, 896 (2007)

    Article  ADS  Google Scholar 

  61. J. Bauters et al., Ultra-low-loss high-aspect-ratio \({\rm {Si}}_{3}{\rm {N}}_{4}\) wavequides. Opt. Express 19, 3163 (2011)

    Article  ADS  Google Scholar 

  62. V. Kovalyuk et al., Absorption engineering of NbN nanowires deposited on silicon nitride nanophotonic circuits. Opt. Express 21, 22683 (2013)

    Article  ADS  Google Scholar 

  63. D. Taillaert, P. Bienstman, R. Baets, Compact efficient broadband grating coupler for silicon-on-insulator waveguides. Opt. Lett. 29, 2749 (2004)

    Article  ADS  Google Scholar 

  64. X. Hu, Ph.D.-thesis (MIT, Cambridge, 2011)

    Google Scholar 

  65. S.E. Miller, Integrated optics: an introduction. Bell Syst. Tech. J. 48, 2059 (1969)

    Article  Google Scholar 

  66. M.G. Tanner et al., A superconducting nanowire single photon detector on lithium niobate. Nanotechnology 23, 505201 (2012)

    Article  Google Scholar 

  67. P. Dumon et al., Compact wavelength router based on a silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array. Opt. Express 14, 664 (2006)

    Article  ADS  Google Scholar 

  68. A.J. Kerman et al., Kinetic-inductance-limited reset time of superconducting nanowire photon counters. Appl. Phys. Lett. 88, 111116 (2006)

    Article  ADS  Google Scholar 

  69. B.F. Little et al., Microring resonator channel dropping filters. J. Lightwave Technol. 15, 998 (1997)

    Article  ADS  Google Scholar 

  70. A. Yariv, Critical coupling and its control in optical waveguide-ring resonator systems. IEEE Photonics Technol. Lett. 14, 483 (2002)

    Article  ADS  Google Scholar 

  71. M.K. Barnoski, S.M. Jensen, Fiber waveguides: a novel technique for investigating attenuation characteristics. Appl. Opt. 15, 2112 (1976)

    Article  ADS  Google Scholar 

  72. M.K. Barnoski, M.D. Rourke, S.M. Jensen, R.T. Melville, Optical time domain reflectometer. Appl. Opt. 16, 2375 (1977)

    Article  ADS  Google Scholar 

  73. D. Derickson (ed.), Fiber Optic Test and Measurement (Prentice Hall, New Jersey, 1998)

    Google Scholar 

  74. C. Schuck et al., Optical time domain reflectometry with low noise waveguide-coupled superconducting nanowire single-photon detectors. Appl. Phys. Lett. 102, 191104 (2013)

    Article  ADS  Google Scholar 

  75. J.W. Silverstone et al., On-chip quantum interference between silicon photon-pair sources. Nat. Photon. 8, 104 (2014)

    Google Scholar 

  76. M.J. Collins et al., Integrated spatial multiplexing of heralded single-photon sources. Nat. Commun. 4, 2582 (2013)

    Article  ADS  Google Scholar 

  77. G. Reithmaier et al., On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors. Sci. Rep. 3, 1901 (2013)

    Article  ADS  Google Scholar 

  78. J.W. Silverstone et al., Qubit entanglement on a silicon photonic chip (2014). arXiv:1410.8332

  79. E. Knill, R. Laflamme, G.J. Milburn, A scheme for efficient quantum computation with linear optics. Nature 409, 4652 (2001)

    Article  Google Scholar 

  80. R. Raussendorf, H.J. Briegel, A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfram H. P. Pernice .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pernice, W.H.P., Schuck, C., Tang, H.X. (2016). Waveguide Integrated Superconducting Nanowire Single Photon Detectors on Silicon. In: Hadfield, R., Johansson, G. (eds) Superconducting Devices in Quantum Optics. Quantum Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-24091-6_4

Download citation

Publish with us

Policies and ethics