Skip to main content

Superconducting Transition Edge Sensors for Quantum Optics

  • Chapter
  • First Online:

Part of the book series: Quantum Science and Technology ((QST))

Abstract

High efficiency single-photon detectors allow novel measurements in quantum information processing and quantum photonic systems. The photon-number resolving transition edge sensor (TES) is known for its near-unity detection efficiency and has been used in a number of landmark quantum optics experiments. We review the operating principle of the optical superconducting TES, its use for quantum optics and quantum information processing and review its recent implementation in integrated photonic platforms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We refer detectors with no photon-number-resolving capability as ‘click/no-click’ detectors, i.e. the detector cannot discriminate between the absorption of one or more photons.

  2. 2.

    Note that overall detection efficiency is a product of all optical losses in transferring the photons from where they are generated to where they are detected and the detector’s detection efficiency (see Sect. 1.1.1).

References

  1. B. Cabrera et al., Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors. Appl. Phys. Lett. 73, 735 (1998)

    Article  ADS  Google Scholar 

  2. D. Rosenberg et al., Quantum key distribution at telecom wavelengths with noise-free detectors. Appl. Phys. Lett. 88, 021108 (2006)

    Article  ADS  Google Scholar 

  3. T. Gerrits et al., Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum. Phys. Rev. A 82, 031802 (2010)

    Article  ADS  Google Scholar 

  4. D. Rosenberg et al., Long-distance decoy-state quantum key distribution in optical fiber. Phys. Rev. Lett. 98, 010503 (2007)

    Article  ADS  Google Scholar 

  5. R.W. Romani et al., First astronomical application of a cryogenic transition edge sensor spectrophotometer. Astrophys. J. 521, L153 (1999)

    Article  ADS  Google Scholar 

  6. J. Burney et al., Transition-edge sensor arrays UV-optical-IR astrophysics. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel., Spectrom., Detect. Assoc. Equip. 559, 525–527 (2006)

    Article  ADS  Google Scholar 

  7. A.E. Lita, A.J. Miller, S.W. Nam, Counting near-infrared single-photons with 95 % efficiency. Opt. Express 16, 3032 (2008)

    Article  ADS  Google Scholar 

  8. M.D. Eisaman et al., Invited review article: single-photon sources and detectors. Rev. Sci. Instrum. 82, 071101 (2011)

    Article  ADS  Google Scholar 

  9. K.D. Irwin, G.C. Hilton, Transition-Edge Sensors, in Cryogenic Particle Detection (Springer, Heidelberg, 2005)

    Google Scholar 

  10. D. Fukuda et al., Titanium superconducting photon-number-resolving detector. IEEE Trans. Appl. Supercond. 21, 241 (2011)

    Article  ADS  Google Scholar 

  11. L. Lolli, E. Taralli, M. Rajteri, Ti/Au TES to discriminate single photons. J. Low Temp. Phys. 167, 803 (2012)

    Article  ADS  Google Scholar 

  12. D.F. Santavicca, F.W. Carter, D.E. Prober, Proposal for a GHz count rate near-IR single-photon detector based on a nanoscale superconducting transition edge sensor. Proc. SPIE 8033, Adv. Photon Count. Tech. V 80330W, (2011)

    Google Scholar 

  13. A.J. Miller et al., Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent. Opt. Express 19, 9102 (2011)

    Article  ADS  Google Scholar 

  14. B. Cabrera, Introduction to TES physics. J. Low Temp. Phys. 151, 82 (2008)

    Article  ADS  Google Scholar 

  15. K.D. Irwin, An application of electrothermal feedback for high resolution cryogenic particle detection. Appl. Phys. Lett. 66, 1998 (1995)

    Article  ADS  Google Scholar 

  16. D.J. Fixsen et al., Pulse estimation in nonlinear detectors with nonstationary noise. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel., Spectrom., Detect. Assoc. Equip. 520, 555 (2004)

    Article  ADS  Google Scholar 

  17. R. Jaklevic et al., Quantum interference effects in Josephson tunneling. Phys. Rev. Lett. 12, 159 (1964)

    Article  ADS  Google Scholar 

  18. R.P. Welty, J.M. Martinis, A series array of DC SQUIDs. IEEE Trans. Magn. 27, 2924 (1991)

    Article  ADS  Google Scholar 

  19. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1956)

    MATH  Google Scholar 

  20. G. Dresselhaus, M. Dresselhaus, Interband transitions in superconductors. Phys. Rev. 125, 1212 (1962)

    Article  ADS  MATH  Google Scholar 

  21. A.E. Lita et al., Superconducting transition-edge sensors optimized for high-efficiency photon-number resolving detectors. Proc. SPIE 7681, Advanced Photon Count. Tech. IV 76810D (2010)

    Google Scholar 

  22. A.E. Lita et al., High-efficiency photon-number-resolving detectors based on hafnium transition-edge sensors. AIP Conf. Proc. 1185, 351 (2009)

    Article  ADS  Google Scholar 

  23. A.E. Lita et al., Tuning of tungsten thin film superconducting transition temperature for fabrication of photon number resolving detectors. Appl. Supercond., IEEE Trans. 15, 3528 (2005)

    Article  Google Scholar 

  24. G. Fujii et al., Thin gold covered titanium transition edge sensor for optical measurement. J. Low Temp. Phys. 167, 815 (2012)

    Article  ADS  Google Scholar 

  25. R.H. Hadfield, Single-photon detectors for optical quantum information applications. Nat. Photon. 3, 696 (2009)

    Google Scholar 

  26. B. Calkins et al., Faster recovery time of a hot-electron transition-edge sensor by use of normal metal heat-sinks. Appl. Phys. Lett. 99, 241114 (2011)

    Article  ADS  Google Scholar 

  27. A. Lamas-Linares et al., Nanosecond-scale timing jitter for single photon detection in transition edge sensors. Appl. Phys. Lett. 102, 231117 (2013)

    Article  ADS  Google Scholar 

  28. J.S. Lundeen et al., Tomography of quantum detectors. Nat. Phys. 5, 27 (2009)

    Google Scholar 

  29. D. Achilles et al., Fiber-assisted detection with photon number resolution. Optics Lett. 28, 2387 (2003)

    Article  ADS  Google Scholar 

  30. T. Bartley et al., Direct observation of sub-binomial light. Phys. Rev. Lett. 110, 173602 (2013)

    Article  ADS  Google Scholar 

  31. D. Rosenberg et al., Noise-free high-efficiency photon-number-resolving detectors. Phys. Rev. A 71, 061803 (2005)

    Article  ADS  Google Scholar 

  32. Z.H. Levine et al., Algorithm for finding clusters with a known distribution and its application to photon-number resolution using a superconducting transition-edge sensor. J. Opt. Soc. Am. B 29, 2066 (2012)

    Article  ADS  Google Scholar 

  33. D.J. Fixsen et al., Optimal energy measurement in nonlinear systems: an application of differential geometry. J. Low Temp. Phys. 176, 16 (2014)

    Article  ADS  Google Scholar 

  34. T. Gerrits et al., Extending single-photon optimized superconducting transition edge sensors beyond the single-photon counting regime. Opt. Express 20, 23798 (2012)

    Article  ADS  Google Scholar 

  35. G. Brida et al., Ancilla-assisted calibration of a measuring apparatus. Phys. Rev. Lett. 108, 253601 (2012)

    Article  ADS  Google Scholar 

  36. B. Giorgio et al., Quantum characterization of superconducting photon counters. New J. Phys. 14, 085001 (2012)

    Article  Google Scholar 

  37. P.C. Humphreys et al., Tomography of photon-number resolving continuous output detectors. New J. Phys. 17, 103044 (2015)

    Google Scholar 

  38. G. Di Giuseppe et al., Direct observation of photon pairs at a single output port of a beam-splitter interferometer. Phys. Rev. A 68, 063817 (2003)

    Article  ADS  Google Scholar 

  39. Y. Zhai et al., Photon-number-resolved detection of photon-subtracted thermal light. Opt. Lett. 38, 2171 (2013)

    Article  ADS  Google Scholar 

  40. B. Christensen et al., Detection-Loophole-free test of quantum nonlocality, and applications. Phys. Rev. Lett. 111, 130406 (2013)

    Article  ADS  Google Scholar 

  41. M. Giustina et al., Bell violation using entangled photons without the fair-sampling assumption. Nature 497, 227 (2013)

    Article  ADS  Google Scholar 

  42. C.K. Hong, Z.Y. Ou, L. Mandel, Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044 (1987)

    Article  ADS  Google Scholar 

  43. A. Gilchrist et al., Schrödinger cats and their power for quantum information processing. J. Opt. B: Quantum Semiclassical Opt. 6, S828 (2004)

    Article  ADS  Google Scholar 

  44. A.C. Lund, T.P. Ralph, H.L. Haselgrove, Fault-tolerant linear optical quantum computing with small-amplitude coherent states. Phys. Rev. Lett. 100, 030503 (2008)

    Google Scholar 

  45. A. Ourjoumtsev et al., Generation of optical Schrödinger cats from photon number states. Nature 448, 784 (2007)

    Article  ADS  Google Scholar 

  46. A. Ourjoumtsev et al., Generating Optical Schrödinger Kittens for Quantum Information Processing. Science 312, 83 (2006)

    Article  ADS  Google Scholar 

  47. K. Wakui et al., Photon subtracted squeezed states generated with periodically poled \({\rm KTiOPO}_{4}\). Opt. Express 15, 3568 (2007)

    Google Scholar 

  48. N. Namekata et al., Non-Gaussian operation based on photon subtraction using a photon-number-resolving detector at a telecommunications wavelength. Nat. Photon. 4, 655 (2010)

    Google Scholar 

  49. M. Dakna et al., Generating Schrödinger-cat-like states by means of conditional measurements on a beam splitter. Phys. Rev. A 55, 3184 (1997)

    Article  ADS  Google Scholar 

  50. S. Glancy, H.M. de Vasconcelos, Methods for producing optical coherent state superpositions. J. Opt. Soc. Am. B 25, 712 (2008)

    Article  ADS  Google Scholar 

  51. T.J. Bartley et al., Multiphoton state engineering by heralded interference between single photons and coherent states. Phys. Rev. A 86, 043820 (2012)

    Article  ADS  Google Scholar 

  52. A.I. Lvovsky, Iterative maximum-likelihood reconstruction in quantum homodyne tomography. J. Opt. B: Quantum Semiclassical Opt. 6, S556 (2004)

    Article  ADS  Google Scholar 

  53. K. Banaszek et al., Direct measurement of the Wigner function by photon counting. Phys. Rev. A 60, 674 (1999)

    Article  ADS  Google Scholar 

  54. K. Laiho et al., Probing the negative Wigner function of a pulsed single photon point by point. Phys. Rev. Lett. 105, 253603 (2010)

    Article  ADS  Google Scholar 

  55. G. Donati et al., Observing optical coherence across Fock layers with weak-field homodyne detectors. Nat. Commun. 5, 5584 (2014)

    Google Scholar 

  56. N. Sridhar et al., Direct measurement of the Wigner function by photon-number-resolving detection. J. Opt. Soc. Am. B 31, B34 (2014)

    Article  Google Scholar 

  57. T. Gerrits et al., On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information processing. Phys. Rev. A 84, 060301 (2011)

    Article  ADS  Google Scholar 

  58. B. Calkins et al., High quantum-efficiency photon-number-resolving detector for photonic on-chip information processing. Opt. Express 21, 22657 (2013)

    Article  ADS  Google Scholar 

  59. J.P. Sprengers et al., Waveguide superconducting single-photon detectors for integrated quantum photonic circuits. Appl. Phys. Lett. 99, 181110 (2011)

    Article  ADS  Google Scholar 

  60. W.H.P. Pernice et al., High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat. Commun. 3, 1325 (2012)

    Google Scholar 

  61. T. Gerrits et al., Generation of degenerate, factorizable, pulsed squeezed light at telecom wavelengths. Opt. Express 19, 24434 (2011)

    Article  ADS  Google Scholar 

  62. J.S. Bell, On the Einstein-Podolsky-Rosen paradox. Physics 1, 195 (1964)

    Google Scholar 

  63. M.A. Rowe et al., Experimental violation of a Bell’s inequality with efficient detection. Nature 409, 791 (2001)

    Article  Google Scholar 

  64. M. Ansmann et al., Violation of Bell’s inequality in Josephson phase qubits. Nature 461, 504 (2009)

    Article  ADS  Google Scholar 

  65. J. Hofmann et al., Heralded entanglement between widely separated atoms. Science 337, 72 (2012)

    Article  ADS  Google Scholar 

  66. T. Scheidl et al., Violation of local realism with freedom of choice. Proc. Natl. Acad. Sci. 107, 19708 (2010)

    Article  ADS  Google Scholar 

  67. J. Clauser et al., Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969)

    Article  ADS  Google Scholar 

  68. P.B. Dixon et al., Heralding efficiency and correlated mode coupling of near-IR fiber-coupled photon pairs. Phys. Rev. A 90, 043804 (2014)

    Google Scholar 

  69. R.S. Bennink, Optimal collinear Gaussian beams for spontaneous parametric down-conversion. Phys. Rev. A 81, 053805 (2010)

    Article  ADS  Google Scholar 

  70. P. Eberhard, Background level and counter efficiencies required for a loophole-free Einstein-Podolsky-Rosen experiment. Phys. Rev. A 47, R747 (1993)

    Article  ADS  Google Scholar 

  71. J. Clauser, M. Horne, Experimental consequences of objective local theories. Phys. Rev. D 10, 526 (1974)

    Article  ADS  Google Scholar 

  72. J.Å. Larsson, R.D. Gill, Bell’s inequality and the coincidence-time loophole. EPL (Europhysics Letters) 67, 707 (2004)

    Article  ADS  MATH  Google Scholar 

  73. J.-Å. Larsson et al., Bell-inequality violation with entangled photons, free of the coincidence-time loophole. Phys. Rev. A 90, 032107 (2014)

    Article  ADS  Google Scholar 

  74. M.A. Broome et al., Photonic Boson sampling in a tunable circuit. Science 339, 794 (2013)

    Article  ADS  Google Scholar 

  75. A. Crespi et al., Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nat. Photon. 7, 545 (2013)

    Google Scholar 

  76. J.B. Spring et al., Boson sampling on a photonic chip. Science 339, 798 (2013)

    Article  ADS  Google Scholar 

  77. M. Tillmann et al., Experimental boson sampling. Nat. Photon. 7, 540 (2013)

    Google Scholar 

  78. G. Reithmaier et al., On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors. Sci. Rep. 3, 1901 (2013)

    Article  ADS  Google Scholar 

  79. F. Najafi et al., On-chip detection of non-classical light by scalable integration of single-photon detectors. Nat. Commun. 6, 5873 (2015)

    Google Scholar 

  80. C. Schuck et al., Optical time domain reflectometry with low noise waveguide-coupled superconducting nanowire single-photon detectors. Appl. Phys. Lett. 102, 191104 (2013)

    Article  ADS  Google Scholar 

  81. A.S. Webb et al., MCVD planar substrates for UV-written waveguide devices. Electron. Lett. 43, 517 (2007)

    Article  Google Scholar 

  82. D. Zauner et al., Directly UV-written silica-on-silicon planar waveguides with low insertion loss. Electron. Lett. 34, 1582 (1998)

    Article  Google Scholar 

  83. V. Vedral, Quantifying entanglement in macroscopic systems. Nature 453, 1004 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Quantum Information Science Initiative (QISI) and the NIST ‘Innovations in Measurement Science’ Program. The NIST authors thank all collaborators who enabled the joint experiments summarized in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Gerrits .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gerrits, T., Lita, A., Calkins, B., Nam, S.W. (2016). Superconducting Transition Edge Sensors for Quantum Optics. In: Hadfield, R., Johansson, G. (eds) Superconducting Devices in Quantum Optics. Quantum Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-24091-6_2

Download citation

Publish with us

Policies and ethics