Skip to main content

High Time Resolution with LOFAR

  • Chapter
  • First Online:
Low Frequency Radio Astronomy and the LOFAR Observatory

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 426))

  • 924 Accesses

Abstract

LOFAR achieves high time resolution (< 1 s samples) using its various beam-formed modes. These modes are vital for observations of pulsars, fast radio transients, the Sun, (exo)planets, flare stars and dynamic spectra of scintillating sources—to name a few examples. Here we describe the observing modes and tools available to process raw LOFAR beam-formed data, including the standard pulsar pipeline (‘PulP’; pulppy) and further analysis—with a focus on pulsar dedispersion, folding, RFI excision, polarimetry and searching. We also describe a general purpose dynamic spectrum toolkit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Nonetheless, note that fast (millisecond) imaging is a growing area of technical development.

  2. 2.

    A 160-MHz clock is also available, but it is not (as yet) routinely used. The 160-MHz clock provides 0.15625-MHz subbands and 6.4 μs sampling.

  3. 3.

    Rest in peace sweet, princely BG/P.

  4. 4.

    Fast radio bursts are also affected by propagation in the inter-galactic medium, assuming they are of extragalactic origin.

  5. 5.

    Though using, e.g., cyclic spectroscopy, it might be possible to coherently de-scatter if very high S/N data is available.

  6. 6.

    See http://psrchive.sourceforge.net/manuals/python/.

References

  • Alexov, A., Hessels, J., Mol, J.D., Stappers, B., van Leeuwen, J.: In: Mizumoto, Y., Morita, K.-I., Ohishi, M. (eds.) Astronomical Data Analysis Software and Systems XIX. Astronomical Society of the Pacific Conference Series, vol. 434, p. 193 (2010)

    Google Scholar 

  • Alexov, A., Schellart, P., ter Veen, S., et al.: In: Ballester, P., Egret, D., Lorente, N.P.F. (eds.) Astronomical Data Analysis Software and Systems XXI. Astronomical Society of the Pacific Conference Series, vol. 461, p. 283 (2012)

    Google Scholar 

  • Archibald, A.M., Kondratiev, V.I., Hessels, J.W.T., Stinebring, D.R.: Astrophys. J. 790, L22 (2014)

    Article  ADS  Google Scholar 

  • Backer, D.C., Kulkarni, S.R., Heiles, C., Davis, M.M., Goss, W.M.: Nature 300, 615 (1982)

    Article  ADS  Google Scholar 

  • Bassa, C.G., Patruno, A., Hessels, J.W.T., et al.: Mon. Not. R. Astron. Soc. 441, 1825 (2014)

    Article  ADS  Google Scholar 

  • Bilous, A., Hessels, J., Kondratiev, V., et al. (2014). arXiv e-prints

    Google Scholar 

  • Coenen, T.: PhD thesis, Anton Pannekoek Instituut, Universiteit van Amsterdam, Postbus 94249, Amsterdam, The Netherlands (2013)

    Google Scholar 

  • Coenen, T., van Leeuwen, J., Hessels, J.W.T., et al.: Astron. Astrophys. 570, A60 (2014)

    Article  Google Scholar 

  • Demorest, P.B.: Mon. Not. R. Astron. Soc. 416, 2821 (2011)

    Article  ADS  Google Scholar 

  • Dolch, T., Lam, M.T., Cordes, J., et al.: Astrophys. J. 794, 21 (2014)

    Article  ADS  Google Scholar 

  • Fallows, R.A., Asgekar, A., Bisi, M.M., Breen, A.R., ter Veen, S.: Sol. Phys. 285, 127 (2013)

    Article  ADS  Google Scholar 

  • Fallows, R., Coles, W., McKay-Bukowski, D., et al.: J. Geophys. Res. Space Phys. 119, 10544–10560 (2014)

    Article  ADS  Google Scholar 

  • Hassall, T.E., Stappers, B.W., Hessels, J.W.T., et al.: Astron. Astrophys. 543, A66 (2012)

    Article  Google Scholar 

  • Hassall, T.E., Stappers, B.W., Weltevrede, P., et al.: Astron. Astrophys. 552, A61 (2013)

    Article  Google Scholar 

  • Hermsen, W., Hessels, J.W.T., Kuiper, L., et al.: Science 339, 436 (2013)

    Article  ADS  Google Scholar 

  • Hewish, A., Bell, S.J., Pilkington, J.D.H., Scott, P.F., Collins, R.A.: Nature 217, 709 (1968)

    Article  ADS  Google Scholar 

  • Hobbs, G.B., Edwards, R.T., Manchester, R.N.: Mon. Not. R. Astron. Soc. 369, 655 (2006)

    Article  ADS  Google Scholar 

  • Hotan, A.W., van Straten, W., Manchester, R.N.: Publ. Astron. Soc. Aust. 21, 302 (2004)

    Article  ADS  Google Scholar 

  • Karako-Argaman, C., Kaspi, V.M., Lynch, R.S., et al.: (2015). arXiv e-prints

    Google Scholar 

  • Kondratiev, V.I., Verbiest, J.P.W., Hessels, J.W.T., et al.: Astron. Astrophys. 585, A128 (2016)

    Article  Google Scholar 

  • Kramer, M., Lyne, A.G., O’Brien, J.T., Jordan, C.A., Lorimer, D.R.: Science 312, 549 (2006)

    Article  ADS  Google Scholar 

  • Lorimer, D.R., Kramer, M.: Handbook of Pulsar Astronomy. Cambridge Observing Handbooks for Research Astronomers, vol. 4. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  • Lorimer, D.R., Bailes, M., McLaughlin, M.A., Narkevic, D.J., Crawford, F.: Science 318, 777 (2007)

    Article  ADS  Google Scholar 

  • Lyne, A., Hobbs, G., Kramer, M., Stairs, I., Stappers, B.: Science 329, 408 (2010)

    Article  ADS  Google Scholar 

  • McKay-Bukowski, D., Vierinen, J.-P., Virtanen, I., et al.: IEEE Trans. Geosci. Remote Sens. 53, 1440 (2014)

    Article  ADS  Google Scholar 

  • McLaughlin, M.A., Lyne, A.G., Lorimer, D.R., et al.: Nature 439, 817 (2006)

    Article  ADS  Google Scholar 

  • Mol, J.D., Romein, J.W.: (2011). arXiv e-prints

    Google Scholar 

  • Morosan, D.E., Gallagher, P.T., Zucca, P., et al.: Astron. Astrophys. 568, A67 (2014)

    Article  Google Scholar 

  • Noutsos, A., Sobey, C., Kondratiev, V.I., et al.: (2015). arXiv e-prints

    Google Scholar 

  • Offringa, A.R., de Bruyn, A.G., Zaroubi, S., et al.: Astron. Astrophys. 549, A11 (2013)

    Article  Google Scholar 

  • Papitto, A., Ferrigno, C., Bozzo, E., et al.: Nature 501, 517 (2013)

    Article  ADS  Google Scholar 

  • Pilia, M., Hessels, J.W.T., Stappers, B.W., et al.: Astron. Astrophys. 586, A92 (2016)

    Article  Google Scholar 

  • Ransom, S.M.: PhD thesis, Harvard University (2001)

    Google Scholar 

  • Rickett, B.J.: Annu. Rev. Astron. Astrophys. 28, 561 (1990)

    Article  ADS  Google Scholar 

  • Serylak, M., Karastergiou, A., Williams, C., et al.: In: van Leeuwen, J. (ed.) IAU Symposium, vol. 291, pp. 492–494 (2013)

    Google Scholar 

  • Sobey, C., Young, N.J., Hessels, J.W.T., et al.: (2015). arXiv e-prints

    Google Scholar 

  • Sotomayor-Beltran, C., Sobey, C., Hessels, J.W.T., et al.: Astron. Astrophys. 552, A58 (2013)

    Article  Google Scholar 

  • Spitler, L.G., Cordes, J.M., Hessels, J.W.T., et al.: Astrophys. J. 790, 101 (2014)

    Article  ADS  Google Scholar 

  • Stappers, B.W., Hessels, J.W.T., Alexov, A., et al.: Astron. Astrophys. 530, A80 (2011)

    Article  Google Scholar 

  • Stappers, B.W., Archibald, A.M., Hessels, J.W.T., et al.: Astrophys. J. 790, 39 (2014)

    Article  ADS  Google Scholar 

  • Stovall, K., Lynch, R.S., Ransom, S.M., et al.: Astrophys. J. 791, 67 (2014)

    Article  ADS  Google Scholar 

  • Thornton, D., Stappers, B., Bailes, M., et al.: Science 341, 53 (2013)

    Article  ADS  Google Scholar 

  • van Haarlem, M.P., Wise, M.W., Gunst, A.W., et al.: Astron. Astrophys. 556, A2 (2013)

    Article  Google Scholar 

  • van Straten, W., Bailes, M.: Publ. Astron. Soc. Aust. 28, 1 (2011)

    Article  ADS  Google Scholar 

  • van Straten, W., Manchester, R.N., Johnston, S., Reynolds, J.E.: Publ. Astron. Soc. Aust. 27, 104 (2010)

    Article  ADS  Google Scholar 

  • van Straten, W., Demorest, P., Oslowski, S.: Astron. Res. Technol. 9, 237 (2012)

    Google Scholar 

Download references

Acknowledgements

Many thanks to Vlad Kondratiev and Anastasia Alexov for being key contributors in the development and testing of the LOFAR Standard Pulsar Pipeine (PulP; pulppy). Along with the author (JH) of this chapter, Ben Stappers is co-lead of the LOFAR Pulsar Working Group, and has played a large role in the development of LOFAR’s BF modes. Anya Bilous provided the lovely plots for Fig. 14.5. Many thanks also to Charlotte Sobey and Aris Noutsos for providing descriptions of LOFAR RM synthesis and polarimetric calibration. Also many thanks to the 20-odd members of the LOFAR Pulsar Working Group for the great contributions that they have made to LOFAR BF commissioning and science exploitation. Many thanks to Nicolas Vilchez for his single-handed development of the Dynamic Spectrum Toolkit. Jason Hessels gratefully acknowledges funding from an NWO Vidi fellowship and ERC Starting Grant DRAGNET (337062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Hessels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hessels, J., Fallows, R. (2018). High Time Resolution with LOFAR. In: Heald, G., McKean, J., Pizzo, R. (eds) Low Frequency Radio Astronomy and the LOFAR Observatory. Astrophysics and Space Science Library, vol 426. Springer, Cham. https://doi.org/10.1007/978-3-319-23434-2_14

Download citation

Publish with us

Policies and ethics