Skip to main content

Improving BER Performance of Uplink LTE by Using Turbo Equalizer

  • Conference paper
  • First Online:
Internet of Things, Smart Spaces, and Next Generation Networks and Systems (ruSMART 2015, NEW2AN 2015)

Abstract

The potential of turbo-equalization technique applied to uplink (UL) LTE signals detection is analyzed in this paper. The turbo equalizer, which is also called iterative receiver, represents a popular approach for detection of signals passed through a fading channel. The receiver performs equalization and decoding of error-correcting code in a loop. For implementation of the iterative receiver we performed two frequency-domain equalizers: the approximate MMSE SISO-equalizer and the soft interference canceller (SIC) SISO-equalizer. During the simulation, we analyzed several configurations of UL LTE with QPSK, 16-QAM, 64-QAM signal constellations and allocation of 25 and 100 resource blocks. All considered modes used rate 2/3 parallel concatenated convolutional code and single input single output antennas pattern. Bit error rate (BER) performance was estimated during the simulation with the extended vehicular A (EVA) model of multipath fading channel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Proakis, J., Salehi, M.: Digital Communications, 5th edn. McGraw-Hill, New York (2008)

    Google Scholar 

  2. Myung, H.G., Goodman, D.: Single Carrier FDMA: A new air interface for long term evolution. John Wiley & Sons Ltd., Chichester (2008)

    Google Scholar 

  3. Douillard, C., Jezequel, M., Berrou, C.: Iterative correction of intersymbol interference: Turbo equalization. Eur. Trans. Telecommun. 6(5), 507–511 (1995)

    Article  Google Scholar 

  4. Shannon, C.E.: A mathematical theory of communication. The Bell System Technical Journal 27, 379–423, 623–656 (1948)

    Google Scholar 

  5. Viterbi, A.J.: Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans. Inform. Theory IT-13, 260–269 (1967)

    Article  Google Scholar 

  6. Bahl, L., Cocke, J., Jelinek, F., Raviv, J.: Optimal decoding of linear codes for minimizing symbol error rate. IEEE Trans. Inf. Theory IT-20, 284–287 (1974)

    Article  MathSciNet  Google Scholar 

  7. Berrou, C., Glavieux, A., Thitimajshima, P.: Near shannon limit error-correcting coding: turbo codes. In: Proc. IEEE Int. Conf. Commun., Geneva, Switzerland, pp. 1064–1070 (1993)

    Google Scholar 

  8. Benedetto, S., Montorsi, G., Divsalar, D., Pollara, F.: Serial concatenation of intereleaved codes: Performance analysis, design and iterative decoding. In: TDA Progr. Rep. 42–126, Jet Propulsion Lab., Pasadena, CA, pp. 1–26 (1996)

    Google Scholar 

  9. Benedetto, S., Divsalar, D., Montorsi, G., Pollara, F.: Serial concatenation of intereleaved codes: Performance analysis, design and iterative decoding. IEEE Trans. Inform. Theory 44, 909–926 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hagenauer, J., Hoeher, P.: A Viterbi algorithm with soft-decision outputs and its applications. In: Proc. IEEE GLOBECOM, Dallas, TX, pp. 47.1.1−47.1.7 (1989)

    Google Scholar 

  11. Tüchler, M., Koetter, R., Singer, A.: Turbo equalization: principles and new results. IEEE Trans. Commun. 50(5), 754–767 (2002)

    Article  Google Scholar 

  12. Tüchler, M., Singer, A., Koetter, R.: Minimum mean squared error equalization using a priori information. IEEE Trans. Signal Process. 50(3), 673–683 (2002)

    Article  Google Scholar 

  13. Glavieux, A., Laot, C., Labat, J.: Turbo equalization over a frequency selective channel. In: Proc. Int. Symp. Turbo Codes Related Topics, Brest, France, pp. 96–102, September 1997

    Google Scholar 

  14. Raphaeli, D., Saguy, A.: Linear equalizers for turbo equalization: A new optimization criterion for determining the equalizer taps. In: Proc. Int. Symp. Turbo Codes Related Topics, Brest, France, pp. 371–374, September 2000

    Google Scholar 

  15. Trajkovic, V.D.: Novel exact low complexity MMSE turbo equalization. In: IEEE 19th Int. Symp. Personal, Indoor and Mobile Radio Commun., pp. 1–5, September 15–18, 2008

    Google Scholar 

  16. Ampeliotis, D., Berberidis, K.: A linear complexity turbo equalizer based on a modified soft interference canceller. In: IEEE 7th WS Signal Proc. Advances in Wireless Commun., pp. 1–5, July 2–5, 2006

    Google Scholar 

  17. Benvenuto, N., Tomasin, S.: On the comparison between OFDM and single-carrier modulation with a DFE using a frequency-domain feed forward filter. IEEE Trans. Commun. 50(6), 947–955 (2002)

    Article  Google Scholar 

  18. Huang, G., Nix, A., Armour, S.: Decision feedback equalization in SC-FDMA. In: IEEE 19th Int. Symp. Personal, Indoor and Mobile Radio Commun., pp. 1–5, September 15–18, 2008

    Google Scholar 

  19. Wang, Q., Yuan, C., Zhang, J., Li, Y.: A robust low complexity frequency domain iterative block DFE for SC-FDMA system. In: IEEE Int. Conf. on Commun. pp. 5042–5046, June 9–13, 2013

    Google Scholar 

  20. Tuchler, M., Singer, A.C.: Turbo equalization: an overview. IEEE Trans. Inf. Theory 57(2), 920–952 (2011)

    Article  MathSciNet  Google Scholar 

  21. Wu, B., Niu, K., Gong, P., Sun, S.: An improved MMSE turbo equalization algorithm in frequency domain. In: IEEE 14th Int. Conf. Commun. Technology (ICCT), pp. 444–448, November 9–11, 2012

    Google Scholar 

  22. Jar, M., Bouton, E., Schlegel, C.: Frequency domain iterative equalization for single-carrier FDMA. In: IEEE 12th Int. WS Signal Proc. Advances in Wireless Commun., pp. 301–305, June 26–29, 2011

    Google Scholar 

  23. 3GPP TS 36.211 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA). Physical Channels and Modulation

    Google Scholar 

  24. 3GPP TS 36.212 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA). Multiplexing and channel coding

    Google Scholar 

  25. Sherman, J., Morrison, W.: Adjustment of an Inverse Matrix Corresponding to a Change in One Element of a Given Matrix. Annals of Mathematical Statistics 21(1), 124–127 (1950)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandr Gelgor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Gelgor, A., Gorlov, A., Ivanov, P., Popov, E., Arkhipkin, A., Gelgor, T. (2015). Improving BER Performance of Uplink LTE by Using Turbo Equalizer. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds) Internet of Things, Smart Spaces, and Next Generation Networks and Systems. ruSMART NEW2AN 2015 2015. Lecture Notes in Computer Science(), vol 9247. Springer, Cham. https://doi.org/10.1007/978-3-319-23126-6_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23126-6_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23125-9

  • Online ISBN: 978-3-319-23126-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics