Skip to main content

Part of the book series: Universitext ((UTX))

  • 2185 Accesses

Abstract

Let \(\Omega \) be a domain (an open, connected set) in \(\mathbb{R}^{n}\) with non-empty boundary, \(1 < p < \infty \), and denote by δ(x) the distance from a point \(\mathbf{x} \in \Omega \) to the boundary \(\partial \Omega \) of \(\Omega,\) i.e.,

$$\displaystyle{\delta (\mathbf{x}):=\inf \{ \vert \mathbf{x} -\mathbf{y}\vert: \mathbf{y} \in \mathbb{R}^{n}\setminus \Omega \}.}$$

The basic inequality to be considered in this chapter is

$$\displaystyle{ \int _{\Omega }\vert \nabla f(\mathbf{x})\vert ^{p}d\mathbf{x} \geq c(n,p,\Omega )\int _{ \Omega }\frac{\vert f(\mathbf{x})\vert ^{p}} {\delta (\mathbf{x})^{p}} d\mathbf{x},\ \ \ f \in C_{0}^{\infty }(\Omega ); }$$
(3.1.1)

equivalently, the inequality is to hold for all \(f \in W_{0}^{1,p}(\Omega ).\)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ancona, A.: On strong barriers and an inequality of Hardy for domains in \(\mathbb{R}^{2}\). J. Lond. Math. Soc. 34, 274–290 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  2. Avkhadiev, F.G.: Hardy type inequalities in higher dimensions with explicit estimate of constants. Lobachevskii J. Math. 21, 3–31 (2006). http://ljm.ksu.ru

  3. Avkhadiev, F.G., Laptev, A.: Hardy inequalities for non-convex domains. In: Around the Research of Vladimir Maz’ya. I, International Mathematical Series (N. Y.), vol. 11, pp. 1–12. Springer, New York (2010)

    Google Scholar 

  4. Avkhadiev, F.G., Wirths, K.: Unified Poincaré and Hardy inequalities with sharp constants for convex domains. Z. Angew. Math. Mech. 87(8–9), 632–642 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Balinsky, A., Evans, W.D.: Some recent results on Hardy-type inequalities. Appl. Math. Inf. Sci. 4(2), 191–208 (2010)

    MATH  MathSciNet  Google Scholar 

  6. Balinsky, A., Evans, W.D., Hundertmark, D., Lewis, R.T.: On inequalities of Hardy-Sobolev type. Banach J. Math. Anal. 2(2), 94–106 (2008)

    MATH  MathSciNet  Google Scholar 

  7. Balinsky, A., Evans, W.D., Lewis, R.T.: Hardy’s inequality and curvature. J. Funct. Anal. 262, 648–666 (2012) [Available online 13 October 2011]

    Google Scholar 

  8. Brezis, H., Marcus, M.: Hardy’s inequalities revisited. Dedicated to Ennio De Giorgi. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25(4), 217–237 (1997)

    MATH  MathSciNet  Google Scholar 

  9. Davies, E.B.: Some norm bounds and quadratic form inequalities for Schrödinger operators (II). J. Oper. Theory 12, 177–196 (1984)

    MATH  Google Scholar 

  10. Davies, E.B.: Heat Kernels and Spectral Theory. Cambridge Tracts in Mathematics, vol. 92. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  11. Davies, E.B.: Spectral Theory and Differential Operators. Cambridge Studies in Advanced Mathematics, vol. 42. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  12. Davies, E.B.: The Hardy constant. Q. J. Math. Oxf. (2) 46, 417–431 (1995)

    Google Scholar 

  13. Edmunds, D.E., Evans, W.D.: Spectral Theory and Differential Operators. Oxford University Press, Oxford (1987) [OX2 GDP]

    MATH  Google Scholar 

  14. Evans, W.D., Lewis, R.T.: Hardy and Rellich inequalities with remainders. J. Math. Inequal. 1(4), 473–490 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. Wiley, New York (2007)

    Google Scholar 

  16. Filippas, S., Maz’ya, V., Tertikas, A.: On a question of Brezis and Marcus. Calc. Var. 25(4), 491–501 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Filippas, S., Maz’ya, V., Tertikas, A.: Critical Hardy-Sobolev inequalities. J. Math. Pures Appl. 87, 37–56 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer Classics in Mathematics. Springer, Berlin/Heidelberg/New York (2001). Reprint of the 1998 Edition

    Google Scholar 

  19. Hadwiger, H.: Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. Springer, Berlin/Göttingen/Heidelberg (1957)

    Book  MATH  Google Scholar 

  20. Hajłasz, P.: Pointwise Hardy inequalities. Proc. Am. Math. Soc. 127(2), 417–423 (1999)

    Article  MATH  Google Scholar 

  21. Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Laptev, A.: A geometrical version of Hardy’s inequality. J. Funct. Anal. 189, 539–548 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Itoh, J.-I., Tanaka, M.: The Lipschitz continuity of the distance function to the cut locus. Trans. Am. Math. Soc. 353(1), 21–40 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kinnunen, J., Martio, O.: Hardy’s inequality for Sobolev functions. Math. Res. Lett. 4, 489–500 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kinnunen, J., Korte, R.: Characterizations of Hardy’s Inequality. Around the research of Vladimir Mazy’a I, pp. 239–254. Springer, New York (2010)

    Google Scholar 

  25. Koskela, P., Zhong, X.: Hardy’s inequality and the boundary size. Proc. Am. Math. Soc. 131(4), 1151–1158 (2002)

    Article  MathSciNet  Google Scholar 

  26. Krantz, S.: Complex Analysis: The Geometric Viewpoint. Carus Mathematical Monographs, vol. 23. Mathematical Association of America, Washington, DC (1990)

    Google Scholar 

  27. Kreyszig, E.: Differential Geometry. Dover, New York (1991)

    Google Scholar 

  28. Laptev, A., Sobolev, A.V.: Hardy inequalities for simply connected planar domains. Am. Math. Soc. Transl. Ser. 2 225, 133–140 (2008)

    MathSciNet  Google Scholar 

  29. Lehrbäck, J.: Pointwise Hardy inequalities and uniformly fat sets. Proc Am. Math. Soc. 136(6), 2193–2200 (2008)

    Article  MATH  Google Scholar 

  30. Lehrbäck, J.: Weighted Hardy inequalities and the size of the boundary. Manuscripts Math. 127, 249–273 (2008)

    Article  MATH  Google Scholar 

  31. Lehrbäck, J., Tuominen, H.: A note on the dimensions of Assouad and Aikawa. J. Math. Soc. Jpn. 65.2, 343–356 (2013)

    Article  MATH  Google Scholar 

  32. Lewis, J.L.: Uniformly fat sets. Trans. Am. Math. Soc. 308, 177–196 (1988)

    Article  MATH  Google Scholar 

  33. Lewis, R.T.: Spectral properties of some degenerate elliptic differential operators. In: Operator Theory: Advances and Applications, vol. 219, pp. 139–156. Springer, Basel (2012)

    Google Scholar 

  34. Lewis, R.T., Li, J., Li, Y.: A geometric characterization of a sharp Hardy inequality. J. Funct. Anal. 262(7), 3159–3185 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  35. Li, Y., Nirenberg, L.: The distance to the boundary, Finsler geometry, and the singular set of viscosity solutions of some Hamilton-Jacobi equations. Commun. Pure Appl. Math. 18(1), 85–146 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  36. Luukainen, J.: Assouad dimension: Antifractal metrization, porous sets and homogeneous measures. J. Korean Math. Soc. 1, 23–76 (1998)

    Google Scholar 

  37. Mantegazza, C., Mennucci, A.C.: Hamilton-Jacobi equations and distance functions on Riemannian manifolds. Appl. Math. Optim. 47, 1–25 (2003)

    Article  MathSciNet  Google Scholar 

  38. Marcus, M., Mizel, V., Pinchover, Y.: On the best constant for Hardy’s inequality in \(\mathbb{R}^{n}\). Trans. Am. Math. Soc. 350(8), 3237–3255 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  39. Matskewich, T., Sobolevskii, P.: The best possible constant in generalized Hardy’s inequality for convex domain in \(\mathbb{R}^{n}\). Nonlinear Anal. Theory Methods Appl. 28(9), 1601–1610 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  40. Maz’ya, V.G.: Sobolev Spaces. Springer, Berlin (1985)

    Google Scholar 

  41. Nenciu, G., Nenciu, I.: On confining potentials and essential self-adjointness for Schrödinger operators on bounded domains in \(\mathbb{R}^{n}\). Ann. Henri Poincaré 10, 377–394 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  42. Simon, B.: Essential self-adjointness of Schrödinger operators with singular potentials. Rat. Anal. Mech. 52(1), 44–48 (1973)

    Article  MATH  Google Scholar 

  43. Tidblom, J.: A geometrical version of Hardy’s inequality for \(W_{0}^{1,p}(\Omega )\). Proc. Am. Math. Soc. 132(8), 2265–2271 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  44. Tidblom, J.: Improved L p Hardy Inequalities. Ph.D. thesis, Stockholm University (2005)

    Google Scholar 

  45. Ward, A.: On Essential Self-Adjointness, Confining Potential and the L p Hardy inequality. Ph.D. thesis, Massey University, Albany (2014)

    Google Scholar 

  46. Wen, G.-C.: Conformal Mappings and Boundary-Value Problems. Translations of Mathematical Monographs, vol. 166. American Mathematical Society, Providence (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Balinsky, A.A., Evans, W.D., Lewis, R.T. (2015). Hardy’s Inequality on Domains. In: The Analysis and Geometry of Hardy's Inequality. Universitext. Springer, Cham. https://doi.org/10.1007/978-3-319-22870-9_3

Download citation

Publish with us

Policies and ethics