Skip to main content

Part of the book series: Universitext ((UTX))

Abstract

Let \(\Omega \) be an open subset of \(\mathbb{R}^{n},\ n \geq 2,\) with non-empty boundary, and set

$$\displaystyle{\delta (\mathbf{x}):=\inf \{ \vert \mathbf{x} -\mathbf{y}\vert: \mathbf{y} \in \mathbb{R}^{n}\setminus \Omega \}}$$

for the distance of \(\mathbf{x} \in \Omega \) to the boundary \(\partial \Omega \) of \(\Omega \). Our main objective in this chapter is to gather information about the regularity properties of δ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armitage, D.H., Kuran, Ü.: The convexity of a domain and the superharmonicity of the signed distance function. Proc. Am. Math. Soc. 93(4), 598–600 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  2. Avkhadiev, F.G.: Hardy type inequalities in higher dimensions with explicit estimate of constants. Lobachevskii J. Math. 21, 3–31 (2006). http://ljm.ksu.ru

  3. Balinsky, A., Evans, W.D., Lewis, R.T.: Hardy’s inequality and curvature. J. Funct. Anal. 262, 648–666 (2012) [Available online 13 October 2011]

    Google Scholar 

  4. Barbatis, G., Filippas, S., Tertikas, A.: A unified approach to improved L p Hardy inequalities with best constants. Trans. Am. Math. Soc. 356(6), 2169–2196 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brown, R.C., Edmunds, D.D., Rákosník, J.: Remarks on inequalities of Poincaré type. Czech. Math. J. 45, 351–377 (1995)

    MATH  Google Scholar 

  6. Bunt, L.H.N.: Bijdrage tot de Theorie der convexe Puntverzamelingen. Thesis, University of Groningen, Amsterdam (1934)

    Google Scholar 

  7. Cannarsa, P., Sinestrari, C.: Semiconcave functions, Hamilton Jacobi equations and optimal control. In: Progress in Nonlinear Differential equations and their Applications, vol. 58, Birkhäuser, Boston (2004)

    Google Scholar 

  8. Edmunds, D.E., Evans, W.D.: Spectral Theory and Differential Operators. Oxford University Press, Oxford (1987) [OX2 GDP]

    MATH  Google Scholar 

  9. Edmunds, D.E., Evans, W.D.: Hardy Operators, Function Spaces, and Embeddings. Springer Monographs in Mathematics. Springer, Berlin/Heidelberg/New York (2004)

    Book  MATH  Google Scholar 

  10. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC, Boca Raton/London/New York/Washington, DC (1992)

    MATH  Google Scholar 

  11. Evans, W.D., Harris, D.J.: Sobolev embeddings for generalized ridged domains, Proc. Lond. Math. Soc. 54, 141–175 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  12. Federer, H.: Curvature measures. Trans. Am. Math. Soc. 93(3), 418–491 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fremlin, D.H.: Skeletons and central sets. Proc. Lond. Math. Soc. 74, 701–720 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer Classics in Mathematics. Springer, Berlin/Heidelberg/New York (2001). Reprint of the 1998 Edition

    Google Scholar 

  15. Hörmander, L.: Notions of Convexity. Birkhäuser, Boston/Basel/Berlin (1994)

    MATH  Google Scholar 

  16. Itoh, J.-I., Tanaka, M.: The Lipschitz continuity of the distance function to the cut locus. Trans. Am. Math. Soc. 353(1), 21–40 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kreyszig, E.: Differential Geometry. Dover, New York (1991)

    Google Scholar 

  18. Kuratowski, K.: Topology, vol. II. Academic, New York (1968)

    Google Scholar 

  19. Lewis, R.T., Li, J., Li, Y.: A geometric characterization of a sharp Hardy inequality. J. Funct. Anal. 262(7), 3159–3185 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Li, Y., Nirenberg, L.: The distance to the boundary, Finsler geometry, and the singular set of viscosity solutions of some Hamilton-Jacobi equations. Commun. Pure Appl. Math. 18(1), 85–146 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. MacLaurin, C.: A second letter to Martin Folkes, Esq.; concerning the roots of equations, with the demonstration of other rules in algebra. Philos. Trans. 36, 59–96 (1729)

    Google Scholar 

  22. Mantegazza, C., Mennucci, A.C.: Hamilton-Jacobi equations and distance functions on Riemannian manifolds. Appl. Math. Optim. 47, 1–25 (2003)

    Article  MathSciNet  Google Scholar 

  23. Motzkin, T.S.: Sur quelques propriétés charactéristiques des ensembles convexes. Atti Real. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. Serie VI 21, 562–567 (1935)

    Google Scholar 

  24. Newton, I.: Sive de compositione et resolutione arithmetica liber. Arithmetica universalis (1707)

    Google Scholar 

  25. Psaradakis, G.: L 1 Hardy inequalities with weights. J. Geom. Anal. 23(4), 1703–1728 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  26. Stein, E.M.: Singular Integrals and Differentiability properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  27. Thorpe, J.: Elementary Topics in Differential Geometry. Undergraduate Texts in Mathematics, Springer, New York (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Balinsky, A.A., Evans, W.D., Lewis, R.T. (2015). Boundary Curvatures and the Distance Function. In: The Analysis and Geometry of Hardy's Inequality. Universitext. Springer, Cham. https://doi.org/10.1007/978-3-319-22870-9_2

Download citation

Publish with us

Policies and ethics