Skip to main content

Part of the book series: Universitext ((UTX))

  • 2223 Accesses

Abstract

The Hardy and Sobolev inequalities are of fundamental importance in many branches of mathematical analysis and mathematical physics, and have been intensively studied since their discovery. A rich theory has been developed with the original inequalities on \((0,\infty )\) extended and refined in many ways, and an extensive literature on them now exists. We shall be focusing throughout the book on versions of the inequalities in L p spaces, with \(1 < p < \infty \). In this chapter we shall be mainly concerned with the inequalities in \((0,\infty )\) or \(\mathbb{R}^{n},\ n \geq 1\). Later in the chapter we shall also discuss the CLR (Cwikel, Lieb, Rosenbljum) inequality, which gives an upper bound to the number of negative eigenvalues of a lower semi-bounded Schrödinger operator in \(L^{2}(\mathbb{R}^{n})\). This has a natural place with the Hardy and Sobolev inequalities as the three inequalities are intimately related, as we shall show. Where proofs are omitted, e.g., of the Sobolev inequality, precise references are given, but in all cases we have striven to include enough background analysis to enable a reader to understand and appreciate the result.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Adimurthi, Tintarev, K.: Hardy inequalities for weighted Dirac operator. Ann. Mat. Pura Appl. 189, 241–251 (2010)

    Google Scholar 

  3. Allegretto, W.: Nonoscillation theory of elliptic equations of order 2n. Pac. J. Math. 64(1), 1–16 (1976)

    Google Scholar 

  4. Aubin, T.: Problemes isoperimetriques et espaces de Sobolev. J. Differ. Geom. 11, 573–598 (1976)

    MATH  MathSciNet  Google Scholar 

  5. Balinsky, A., Evans, W.D.: On the zero modes of Pauli operators. J. Funct. Anal. 179, 120–135 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Balinsky, A., Evans, W.D., Umeda, T.: The Dirac-Hardy and Dirac-Sobolev inequalities in L 1. Publ. Res. Inst. Math. Sci. 47(3), 791–801 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chisholm, R.S., Everitt, W.N.: On bounded integral operators in the space of square integrable functions. Proc. R. Soc. Edinb. A 69, 199–204 (1971)

    MATH  MathSciNet  Google Scholar 

  8. Conlon, J.P.: A new proof of the Cwikel-Lieb-Rosenbljum bound. Rocky Mt. J.Math. 117–122 (1985)

    Google Scholar 

  9. Cwikel, M.: Weak type estimates for singular values and the number of bound states of Schrödinger operators. Ann. Math. 106, 93–100 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  10. Davies, E.B., Hinz, A.M.: Explicit constants for Rellich inequalities in \(L_{p}(\Omega )\). Math. Z. 227(3), 511–523 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dolbeault, J., Esteban, M.J., Séré, E.: On the eigenvalues of operators with gaps. Application to Dirac operators. J. Funct. Anal. 174(1), 208–226 (2000)

    MATH  Google Scholar 

  12. Dolbeault, J., Esteban, M.J., Loss, M., Vega, L.: An analytic proof of Hardy-like inequalities related to the Dirac operator. J. Funct. Anal. 216, 1–21 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Edmunds, D.E., Evans, W.D.: Spectral Theory and Differential Operators. Oxford University Press, Oxford (1987) [OX2 GDP]

    MATH  Google Scholar 

  14. Edmunds, D.E., Evans, W.D.: Hardy Operators, Function Spaces, and Embeddings. Springer Monographs in Mathematics. Springer, Berlin/Heidelberg/New York (2004)

    Book  MATH  Google Scholar 

  15. Esteban, M.J., Loss, M.: Self-adjointness of Dirac operators via Hardy-Dirac inequalities. J. Math. Phys. 48, 112107 (2007)

    Article  MathSciNet  Google Scholar 

  16. Federer, H., Fleming, W.: Normal and integral currents. Ann. Math. 72, 458–520 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gagliardo, E.: Proprietaàdi alcune classi di funzionidi piu variabili. Ricerche Mat. 7, 102–137 (1958)

    MATH  MathSciNet  Google Scholar 

  18. Hardy, G.H.: An inequality between integrals. Messenger Math. 54, 150–156 (1925)

    Google Scholar 

  19. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities, 2nd edn. Cambridge University Press, Cambridge (1952)

    MATH  Google Scholar 

  20. Herbst, I.: Spectral theory of the operator \((p^{2} + m^{2})^{1/2} - ze^{2}/r\). Commun. Math. Phys. 53(3), 285–294 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kato, T.: Perturbation Theory for Linear Operators, 2nd edn. Springer, Berlin/Heidelberg/New York (1976)

    Book  MATH  Google Scholar 

  22. Kufner, A., Maligranda, L., Persson, L.-E.: The Hardy Inequality – About Its History and Some Related Results. Vydavatelský servis, Pilsen (2007)

    MATH  Google Scholar 

  23. Landau, E.: A note on a theorem concerning series of positive terms. J. Lond. Math. Soc. 1, 38–39 (1926)

    MATH  Google Scholar 

  24. Levin, D., Solomyak, M.: The Rozenbljum-Lieb-Cwikel inequality for Markov generators. J. Anal. Math. 71, 173–193 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lewis, R.T.: Singular elliptic operators of second order with purely discrete spectra. Trans. Am. Math. Soc. 271, 653–666 (1982)

    Article  MATH  Google Scholar 

  26. Li, P., Yau, S.-T.: On the Schrödinger equation and the eigenvalue problem. Commun. Math. Phys. 88, 309–318 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  27. Lieb, E.H.: Bounds on the number of eigenvalues of Laplace and Schrödinger operators. Bull. Am. Math. Soc. 82, 751–753 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  28. Lieb, E.H., Loss, M.: Analysis. Graduate Studies in Mathematics, vol. 14, 2nd edn. American Mathematical Society, Providence (2001)

    Google Scholar 

  29. Lieb, E.H., Seiringer, R.: The Stability of Matter in Quantum Mechanics. Cambridge University Press, New York (2010)

    Google Scholar 

  30. Maz’ya, V.G.: Classes of domains and embedding theorems for function spaces. Dokl. Akad. Nauk. SSSR 133, 527–530 (1960). English transl.: Sov. Math. Dokl. 1, 882–885

    Google Scholar 

  31. Muckenhoupt, B.: Hardy’s inequality with weights. Stud. Math. 44, 31–38 (1972)

    MATH  MathSciNet  Google Scholar 

  32. Nirenberg, L.: On elliptic partial differential equations. Ann. Sc. Norm. Pisa 13, 1–48 (1959)

    MathSciNet  Google Scholar 

  33. Opic, B., Kufner, A.: Hardy-type Inequalities. Pitman Research Notes in Mathematics, Series, vol. 219. Longman Science & Technology, Harlow (1990)

    Google Scholar 

  34. Rosenbljum, G.V.: The distribution of the discrete spectrum for singular differential operators. Soviet Math. Dokl. 13, 245–249 (1972)

    Google Scholar 

  35. Seiringer, R.: Inequalities for Schrödinger operators and applications to the stability of matter problem. Lectures given in Tucson, Arizona, 16–20 March 2009

    Google Scholar 

  36. Sobolev, S.L.: On a theorem of functional analysis. Mat. Sb. Am. Math. Soc. Transl. II Ser. 34, 39–68 (1938); 46, 471–497 (1963)

    Google Scholar 

  37. Solomyak, M.Z.: A remark on the Hardy inequalities. Integr. Equ. Oper. Theory 19, 120–124 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  38. Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 110, 353–372 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  39. Weder, R.A.: Spectral properties of one-body relativistic spin-zero Hamiltonians. Ann. Inst. H. Poincaré Sect. A (NS) 20, 211–220 (1974)

    MathSciNet  Google Scholar 

  40. Weder, R.A.: Spectral analysis of pseudodifferential operators. J. Funct. Anal. 20(4), 319–337 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  41. Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis, 4th edn. The University Press, Cambridge (1940)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Balinsky, A.A., Evans, W.D., Lewis, R.T. (2015). Hardy, Sobolev, and CLR Inequalities. In: The Analysis and Geometry of Hardy's Inequality. Universitext. Springer, Cham. https://doi.org/10.1007/978-3-319-22870-9_1

Download citation

Publish with us

Policies and ethics