Skip to main content

Introduction to Self-Assembled Monolayers

  • Chapter
  • First Online:
Molecular Spintronics

Part of the book series: Springer Theses ((Springer Theses))

  • 1227 Accesses

Abstract

One of the most exciting targets of molecular spintronics field is to go towards multifunctional devices where the properties can be accurately controlled and actively changed. Spin dependent hybridization at the metal/molecule interface could thus be used in the tailoring of the resistive and magnetoresistive response of spintronic devices exploiting chemistry versatility. In this new direction, Self-Assembled Monolayers (SAMs) appear as highly promising candidates since each part and function of this system can be modulated independently (like a molecular LEGO building unit). Despite highly promising, they are still scarcely investigated in the literature probably due to the difficulties in device fabrication. This chapter will start by explaining more in details the advantages of SAMs for spintronics and some methods used in molecular electronics to contact single molecular layers. Then, it will report on theoretical models used to describe the charge transport through a SAM barrier and finally a state of the art on molecular spintronics will be also introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.R. Petta, S.K. Slater, D.C. Ralph, Spin-dependent transport in molecular tunnel junctions. Phys. Rev. Lett. 93, 136601 (2004)

    Article  CAS  Google Scholar 

  2. W. Wang, C.A. Richter, Spin-polarized inelastic electron tunneling spectroscopy of a molecular magnetic tunnel junction. Appl. Phys. Lett. 89, 153105 (2006)

    Article  CAS  Google Scholar 

  3. G. Wang, T.-W. Kim, Y.H. Jang, T. Lee, Effects of metal—molecule contact and molecular structure on molecular electronic conduction in nonresonant tunneling regime: alkyl versus conjugated molecules. J. Phys. Chem. C 112(33), 13010–13016 (2008)

    Article  CAS  Google Scholar 

  4. S. Ho Choi, B. Kim, C.D. Frisbie, Electrical resistance of long conjugated molecular wires. Science 320, 1482–1486 (2008)

    Article  CAS  Google Scholar 

  5. A. Salomon, D. Cahen, S. Lindsay, J. Tomfohr, V. Engelkes, C. Frisbie, Comparison of electronic transport measurements on organic molecules. Adv. Mater. 15, 1881–1890 (2003)

    Article  CAS  Google Scholar 

  6. M. Magoga, C. Joachim, Conductance and transparence of long molecular wires. Phys. Rev. B 56, 4722–4729 (1997)

    Article  CAS  Google Scholar 

  7. A. Mishchenko, D. Vonlanthen, V. Meded, M. Bürkle, C. Li, I.V. Pobelov, A. Bagrets, J.K. Viljas, F. Pauly, F. Evers, M. Mayor, T. Wandlowski, Influence of conformation on conductance of biphenyl-dithiol single-molecule contacts. Nano Lett. 10, 156–163 (2010)

    Article  CAS  Google Scholar 

  8. B.L. Feringa, N.P.M. Huck, A.M. Schoevaars, Chiroptical molecular switches. Adv. Mater. 8, 681–684 (1996)

    Article  CAS  Google Scholar 

  9. L. Venkataraman, J.E. Klare, C. Nuckolls, M.S. Hybertsen, M.L. Steigerwald, Dependence of single-molecule junction conductance on molecular conformation. Nature 442, 904–7 (2006)

    Article  CAS  Google Scholar 

  10. K. Smaali, S. Lenfant, S. Karpe, M. Oçafrain, P. Blanchard, D. Deresmes, S. Godey, A. Rochefort, J. Roncali, D. Vuillaume, High on-off conductance switching ratio in optically-driven self-assembled conjugated molecular systems. ACS Nano 4, 2411–2421 (2010)

    Article  CAS  Google Scholar 

  11. L.A. Zotti, T. Kirchner, J.-C. Cuevas, F. Pauly, T. Huhn, E. Scheer, A. Erbe, Revealing the role of anchoring groups in the electrical conduction through single-molecule junctions. Small 6, 1529–1535 (2010)

    Article  CAS  Google Scholar 

  12. W. Hong, D.Z. Manrique, P. Moreno-García, M. Gulcur, A. Mishchenko, C.J. Lambert, M.R. Bryce, T. Wandlowski, Single molecular conductance of tolanes: experimental and theoretical study on the junction evolution dependent on the anchoring group. J. Am. Chem. Soc. 134, 2292–2304 (2012)

    Article  CAS  Google Scholar 

  13. F. Chen, X. Li, J. Hihath, Z. Huang, N. Tao, Effect of anchoring groups on single-molecule conductance: comparative study of thiol-, amine-, and carboxylic-acid-terminated molecules. J. Am. Chem. Soc. 128, 15874–81 (2006)

    Article  CAS  Google Scholar 

  14. J. Chen, L. Calvet, M. Reed, D. Carr, D. Grubisha, D. Bennett, Electronic transport through metal-1,4-phenylene diisocyanide-metal junctions. Chem. Phys. Lett. 313, 741–748 (1999)

    Article  CAS  Google Scholar 

  15. H. Haick, D. Cahen, Making contact: connecting molecules electrically to the macroscopic world. Prog. Surf. Sci. 83, 217–261 (2008)

    Article  CAS  Google Scholar 

  16. B. Mann, H. Kuhn, Tunneling through fatty acid salt monolayers. J. Appl. Phys. 42, 4398–4405 (1971)

    Article  CAS  Google Scholar 

  17. J.G. Kushmerick, Metal-molecule contacts. Mater. Today 8, 26–30 (2005)

    Article  CAS  Google Scholar 

  18. Y.-L. Loo, R.L. Willett, K.W. Baldwin, J.A. Rogers, Interfacial chemistries for nanoscale transfer printing. J. Am. Chem. Soc. 124, 7654–7655 (2002)

    Article  CAS  Google Scholar 

  19. Y.-L. Loo, D.V. Lang, J.A. Rogers, J.W.P. Hsu, B. Laboratories, L. Technologies, M. Hill, Electrical contacts to molecular layers by nanotransfer printing. Nano Lett. 3, 913–917 (2003)

    Article  CAS  Google Scholar 

  20. J.W. Hsu, Soft lithography contacts to organics. Mater. Today 8, 42–54 (2005)

    Article  CAS  Google Scholar 

  21. H.B. Akkerman, P.W.M. Blom, D.M. de Leeuw, B. de Boer, Towards molecular electronics with large-area molecular junctions. Nature 441, 69–72 (2006)

    Article  CAS  Google Scholar 

  22. A.S. Blum, J.G. Kushmerick, D.P. Long, C.H. Patterson, J.C. Yang, J.C. Henderson, Y. Yao, J.M. Tour, R. Shashidhar, B.R. Ratna, Molecularly inherent voltage-controlled conductance switching. Nat. Mater. 4, 167–72 (2005)

    Article  CAS  Google Scholar 

  23. B. Xu, N.J. Tao, Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301, 1221–3 (2003)

    Article  CAS  Google Scholar 

  24. B.Q. Xu, X.L. Li, X.Y. Xiao, H. Sakaguchi, N.J. Tao, Electromechanical and conductance switching properties of single oligothiophene molecules. Nano Lett. 5, 1491–5 (2005)

    Article  CAS  Google Scholar 

  25. M.T. Gonzalez, S. Wu, R. Huber, S.J. van der Molen, C. Schönenberger, M. Calame, Electrical conductance of molecular junctions by a robust statistical analysis. Nano Lett. 6, 2238–42 (2006)

    Article  CAS  Google Scholar 

  26. X. Xiao, B. Xu, N.J. Tao, Measurement of single molecule conductance: benzenedithiol and benzenedimethanethiol. Nano Lett. 4, 267–271 (2004)

    Article  CAS  Google Scholar 

  27. C. Zhou, M.R. Deshpande, M.A. Reed, L. Jones, J.M. Tour, Nanoscale metal/self-assembled monolayer/metal heterostructures. Appl. Phys. Lett. 71, 611 (1997)

    Article  CAS  Google Scholar 

  28. J. Chen, W. Wang, M.A. Reed, A.M. Rawlett, D.W. Price, J.M. Tour, Room-temperature negative differential resistance in nanoscale molecular junctions. Appl. Phys. Lett. 77, 1224 (2000)

    Article  CAS  Google Scholar 

  29. M.A. Reed, J. Chen, A.M. Rawlett, D.W. Price, J.M. Tour, Molecular random access memory cell. Appl. Phys. Lett. 78(23), 3735 (2001)

    Google Scholar 

  30. J. Chen, M.A. Reed, A.M. Rawlett, J.M. Tour, Large on-off ratios and negative differential resistance in a molecular electronic device. Science 286, 1550–1552 (1999)

    Article  CAS  Google Scholar 

  31. J.M. Beebe, V.B. Engelkes, L.L. Miller, C.D. Frisbie, Contact resistance in metal-molecule-metal junctions based on aliphatic SAMs: effects of surface linker and metal work function. J. Am. Chem. Soc. 124, 11268–11269 (2002)

    Article  CAS  Google Scholar 

  32. D.J. Wold, C.D. Frisbie, Formation of metal-molecule-metal tunnel junctions: microcontacts to alkanethiol monolayers with a conducting AFM tip. J. Am. Chem. Soc. 122, 2970–2971 (2000)

    Article  CAS  Google Scholar 

  33. D.J. Wold, C.D. Frisbie, Fabrication and characterization of metal-molecule-metal junctions by conducting probe atomic force microscopy. J. Am. Chem. Soc. 123, 5549–56 (2001)

    Article  CAS  Google Scholar 

  34. N.J. Tao, Electron transport in molecular junctions. Nat. Nanotechnol. 1, 173–81 (2006)

    Article  CAS  Google Scholar 

  35. C. Boulas, J. Davidovits, F. Rondelez, D. Vuillaume, Suppression of charge carrier tunneling through organic self-assembled monolayers. Phys. Rev. Lett. 76, 4797–4800 (1996)

    Article  CAS  Google Scholar 

  36. M. Fujihira, H. Inokuchi, Photoemission from polyethylene. Chem. Phys. Lett. 17, 554–556 (1972)

    Article  CAS  Google Scholar 

  37. J.G. Simmons, Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 34, 1793 (1963)

    Article  Google Scholar 

  38. W. Wang, T. Lee, M.A. Reed, Mechanism of electron conduction in self-assembled alkanethiol monolayer devices. Phys. Rev. B 68, 35416 (2003)

    Article  CAS  Google Scholar 

  39. H.B. Akkerman, R.C.G. Naber, B. Jongbloed, P.A. van Hal, P.W.M. Blom, D.M. de Leeuw, B. de Boer, P.A. van Hal, D.M. de Leeuw, B. de Boer, Electron tunneling through alkanedithiol self-assembled monolayers in large-area molecular junctions. Proc. Natl. Acad. Sci. USA 104,11161–11166 (2007)

    Google Scholar 

  40. R.E. Holmlin, R. Haag, M.L. Chabinyc, R.F. Ismagilov, A.E. Cohen, A. Terfort, M.A. Rampi, G.M. Whitesides, Electron transport through thin organic films in metal–insulator–metal junctions based on self-assembled monolayers. J. Am. Chem. Soc. 123, 5075–5085 (2001)

    Google Scholar 

  41. M.A. Rampi, G.M. Whitesides, A versatile experimental approach for understanding electron transport through organic materials. Chem. Phys. 281, 373–391 (2002)

    Article  CAS  Google Scholar 

  42. J. Tomfohr, O. Sankey, Complex band structure, decay lengths, and Fermi level alignment in simple molecular electronic systems. Phys. Rev. B 65, 245105 (2002)

    Article  CAS  Google Scholar 

  43. J.C. Cuevas, E. Scheer, Molecular Electronics: An introduction to Theory and Experiment. World Scientific Plublishing Co, Singapore (2010)

    Google Scholar 

  44. R. Landauer, Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Dev. 1, 223–231 (1957)

    Article  Google Scholar 

  45. J. Beebe, B. Kim, J. Gadzuk, C.D. Frisbie, J. Kushmerick, Transition from direct tunneling to field emission in metal-molecule-metal junctions. Phys. Rev. Lett. 97, 026801 (2006)

    Article  CAS  Google Scholar 

  46. E.H. Huisman, C.M. Guédon, B.J. van Wees, S.J. van der Molen, C.M. Gue, B.J.V. Wees, Interpretation of transition voltage spectroscopy. Nano Lett. 9, 3909–13 (2009)

    Article  CAS  Google Scholar 

  47. J. Chen, T. Markussen, K.S. Thygesen, Quantifying transition voltage spectroscopy of molecular junctions: ab initio calculations. Phys. Rev. B 82, 121412 (2010)

    Article  CAS  Google Scholar 

  48. I. Baldea, Ambipolar transition voltage spectroscopy: analytical results and experimental agreement. Phys. Rev. B 85(3), 035442 (2012)

    Article  CAS  Google Scholar 

  49. G. Ricoeur, S. Lenfant, D. Guérin, D. Vuillaume, Molecule/electrode interface energetics in molecular junction: a transition voltage spectroscopy study. J. Phys. Chem. C 116, 20722–20730 (2012)

    Article  CAS  Google Scholar 

  50. T. Markussen, J. Chen, K.S. Thygesen, Improving transition voltage spectroscopy of molecular junctions. Phys. Rev. B 83, 155407 (2011)

    Article  CAS  Google Scholar 

  51. N. Okabayashi, M. Paulsson, H. Ueba, Y. Konda, T. Komeda, Inelastic tunneling spectroscopy of alkanethiol molecules: high-resolution spectroscopy and theoretical simulations. Phys. Rev. Lett. 104, 077801 (2010)

    Article  CAS  Google Scholar 

  52. K. Slowinski, R.V.C. Ii, R. Bilewicz, M. Majda, Evidence for inefficient chain-to-chain coupling in electron tunneling through liquid alkanethiol monolayer films on mercury. J. Am. Chem. Soc. 118(19), 4709–4710 (1996)

    Article  CAS  Google Scholar 

  53. K. Slowinski, R.V. Chamberlain, C.J. Miller, R.V. June, V. Re, M. Recei, V. September, Through-bond and chain-to-chain coupling. two pathways in electron tunneling through liquid alkanethiol monolayers on mercury electrodes. J. Am. Chem. Soc. 119(49), 11910–11919 (1997)

    Article  CAS  Google Scholar 

  54. T. Frederiksen, C. Munuera, C. Ocal, M. Brandbyge, M. Paulsson, D. Sanchez-Portal, A. Arnau, Exploring the tilt-angle dependence of electron tunneling across molecular junctions of self-assembled alkanethiols. ACS Nano 3, 2073–80 (2009)

    Article  CAS  Google Scholar 

  55. H. Song, H. Lee, T. Lee, Intermolecular chain-to-chain tunneling in metal-alkanethiol-metal junctions. J. Am. Chem. Soc. 129, 3806–7 (2007)

    Article  CAS  Google Scholar 

  56. X. Cui, A. Primak, X. Zarate, J. Tomfohr, O. Sankey, A. Moore, T. Moore, D. Gust, G. Harris, S. Lindsay, Reproducible measurement of single-molecule conductivity. Science 294, 571–4 (2001)

    Article  CAS  Google Scholar 

  57. Y. Selzer, A. Salomon, D. Cahen, Effect of molecule-metal electronic coupling on through-bond hole tunneling across metal-organic monolayer-semiconductor junctions. J. Am. Chem. Soc. 124, 2886–7 (2002)

    Article  CAS  Google Scholar 

  58. Y.-J. Liu, H.-Z. Yu, Alkyl monolayer-passivated metal-semiconductor diodes: molecular tunability and electron transport. Chemphyschem 3, 799–802 (2002)

    Article  CAS  Google Scholar 

  59. L.A. Bumm, J.J. Arnold, T.D. Dunbar, D.L. Allara, P.S. Weiss, U.V. Park, V. Pennsyl, Electron transfer through organic molecules. J. Phys. Chem. B 103, 8122–8127 (1999)

    Article  CAS  Google Scholar 

  60. W. Haiss, R.J. Nichols, H.V. Zalinge, S.J. Higgins, D. Bethell, D.J. Schiffrin, Measurement of single molecule conductivity using the spontaneous formation of molecular wires Wolfgang. Phys. Chem. Chem. Phys. 6, 4330–4337 (2004)

    Article  CAS  Google Scholar 

  61. M. Suzuki, S. Fujii, M. Fujihira, Measurements of currents through single molecules of alkanedithiols by repeated formation of break junction in scanning tunneling microscopy under ultrahigh vacuum. Jpn. J. Appl. Phys. 45, 2041–2044 (2006)

    Article  CAS  Google Scholar 

  62. X. Cui, A. Primak, X. Zarate, J. Tomfohr, O.F. Sankey, A.L. Moore, T.A. Moore, D. Gust, L.A. Nagahara, S.M. Lindsay, Changes in the electronic properties of a molecule when it is wired into a circuit. J. Phys. Chem. B 106, 8609–8614 (2002)

    Article  CAS  Google Scholar 

  63. T. Morita, S. Lindsay, Determination of single molecule conductances of alkanedithiols by conducting-atomic force microscopy with large gold nanoparticles. J. Am. Chem. Soc. 129, 7262–3 (2007)

    Article  CAS  Google Scholar 

  64. C.-C. Kaun, H. Guo, Resistance of alkanethiol molecular wires. Nano Lett. 3(11), 1521–1525 (2003)

    Article  CAS  Google Scholar 

  65. S. Piccinin, A. Selloni, S. Scandolo, R. Car, G. Scoles, Electronic properties of metal-molecule-metal systems at zero bias: a periodic density functional study. J. Chem. Phys. 119(13), 6729 (2003)

    Article  CAS  Google Scholar 

  66. C. Chu, J.-S. Na, G.N. Parsons, Conductivity in alkylamine/gold and alkanethiol/gold molecular junctions measured in molecule/nanoparticle/molecule bridges and conducting probe structures. J. Am. Chem. Soc. 129, 2287–96 (2007)

    Article  CAS  Google Scholar 

  67. D. Scaini, M. Castronovo, L. Casalis, G. Scoles, Electron transfer mediating properties of hydrocarbons as a function of chain length: a differential scanning conductive tip atomic force microscopy investigation. ACS Nano 2(3), 507–515 (2008)

    Article  CAS  Google Scholar 

  68. X. Cui, X. Zarate, J. Tomfohr, O.F. Sankey, A. Primak, A.L. Moore, T.A. Moore, D. Gust, G. Harris, S.M. Lindsay, Making electrical contacts to molecular monolayers. Nanotechnology 13, 5–14 (2002)

    Article  CAS  Google Scholar 

  69. V.B. Engelkes, J.M. Beebe, C.D. Frisbie, Length-dependent transport in molecular junctions based on SAMs of alkanethiols and alkanedithiols: effect of metal work function and applied bias on tunneling efficiency and contact resistance. J. Am. Chem. Soc. 126, 14287–96 (2004)

    Article  CAS  Google Scholar 

  70. F.-R.F. Fan, J. Yang, L. Cai, D.W. Price, S.M. Dirk, D.V. Kosynkin, Y. Yao, A.M. Rawlett, J.M. Tour, A.J. Bard, Charge transport through self-assembled monolayers of compounds of interest in molecular electronics. J. Am. Chem. Soc. 124, 5550–60 (2002)

    Article  CAS  Google Scholar 

  71. H. Song, T. Lee, N.-J. Choi, H. Lee, A statistical method for determining intrinsic electronic transport properties of self-assembled alkanethiol monolayer devices. Appl. Phys. Lett. 91(25), 253116 (2007)

    Article  CAS  Google Scholar 

  72. T.-W. Kim, G. Wang, H. Lee, T. Lee, Statistical analysis of electronic properties of alkanethiols in metal-molecule-metal junctions. Nanotechnology 18, 315204 (2007)

    Article  CAS  Google Scholar 

  73. R.L. York, P.T. Nguyen, K. Slowinski, Long-range electron transfer through monolayers and bilayers of alkanethiols in electrochemically controlled Hg – Hg tunneling junctions. J. Am. Chem. Soc. 125, 5948–5953 (2003)

    Article  CAS  Google Scholar 

  74. E.A. Weiss, R.C. Chiechi, G.K. Kaufman, J.K. Kriebel, Z. Li, M. Duati, M.A. Rampi, G.M. Whitesides, Influence of defects on the electrical characteristics of mercury-drop junctions: self-assembled monolayers of n-alkanethiolates on rough and smooth silver. J. Am. Chem. Soc. 129, 4336–49 (2007)

    Article  CAS  Google Scholar 

  75. I. Levine, S.M. Weber, Y. Feldman, T. Bendikov, H. Cohen, D. Cahen, A. Vilan, Molecular length, monolayer density, and charge transport: lessons from Al-AlOx/alkyl-phosphonate/Hg junctions. Langmuir 28, 404–15 (2012)

    Article  CAS  Google Scholar 

  76. O. Yaffe, Y. Qi, L. Scheres, S.R. Puniredd, L. Segev, T. Ely, H. Haick, H. Zuilhof, A. Vilan, L. Kronik, A. Kahn, D. Cahen, Charge transport across metal/molecular (alkyl) monolayer-Si junctions is dominated by the LUMO level. Phys. Rev. B 85, 045433 (2012)

    Article  CAS  Google Scholar 

  77. K. Slowinski, H.K.Y. Fong, M. Majda, R.V. May, Mercury—mercury tunneling junctions. 1. Electron tunneling across symmetric and asymmetric alkanethiolate bilayers. J. Am. Chem. Soc. 121(31), 7257–7261 (1999)

    Article  CAS  Google Scholar 

  78. J.F. Smalley, S.W. Feldberg, C.E.D. Chidsey, M.R. Linford, M.D. Newton, Y.-P. Liu, The kinetics of electron transfer through ferrocene-terminated alkanethiol monolayers on gold. J. Phys. Chem. 99, 13141–13149 (1995)

    Article  CAS  Google Scholar 

  79. K. Weber, L. Hockett, S. Creager, Long-range electronic coupling between ferrocene and gold in alkanethiolate-based monolayers on electrodes. J. Phys. Chem. B 101, 8286–8291 (1997)

    Article  CAS  Google Scholar 

  80. F. Milani, C. Grave, V. Ferri, P. Samorì, M.A. Rampi, Ultrathin pi-conjugated polymer films for simple fabrication of large-area molecular junctions. Chemphyschem 8, 515–8 (2007)

    Article  CAS  Google Scholar 

  81. K.T. Shimizu, J.D. Fabbri, J.J. Jelincic, N.A. Melosh, Soft deposition of large-area metal contacts for molecular electronics. Adv. Mater. 18, 1499–1504 (2006)

    Article  CAS  Google Scholar 

  82. M. Galbiati, C. Barraud, S. Tatay, K. Bouzehouane, C. Deranlot, E. Jacquet, A. Fert, P. Seneor, R. Mattana, F. Petroff, Unveiling self-assembled monolayers’ potential for molecular spintronics: spin transport at high voltage. Adv. Mater. 24(48), 6429–6432 (2012)

    Article  CAS  Google Scholar 

  83. Y. Selzer, A. Salomon, D. Cahen, The importance of chemical bonding to the contact for tunneling through alkyl chains. J. Phys. Chem. B 106, 10432–10439 (2002)

    Article  CAS  Google Scholar 

  84. Y. Gu, B. Akhremitchev, G.C. Walker, D.H. Waldeck, Structural characterization and electron tunneling at n-Si/SiO\(_2\)/SAM/liquid interface. J. Phys. Chem. B 103, 5220–5226 (1999)

    Article  CAS  Google Scholar 

  85. G. Wang, T.-W. Kim, H. Lee, T. Lee, Influence of metal-molecule contacts on decay coefficients and specific contact resistances in molecular junctions. Phys. Rev. B 76, 205320 (2007)

    Article  CAS  Google Scholar 

  86. J.M. Beebe, B. Kim, C.D. Frisbie, J.G. Kushmerick, Measuring relative barrier heights in transition voltage spectroscopy. ACS Nano 2(5), 827–832 (2008)

    Article  CAS  Google Scholar 

  87. M.L. Trouwborst, C.A. Martin, R.H.M. Smit, C.M. Guédon, T.A. Baart, S.J. van der Molen, J.M. van Ruitenbeek, Transition voltage spectroscopy and the nature of vacuum tunneling. Nano Lett. 11, 614–617 (2011)

    Google Scholar 

  88. A.V. Walker, T.B. Tighe, J. Stapleton, B.C. Haynie, S. Upilli, D.L. Allara, N. Winograd, Interaction of vapor-deposited Ti and Au with molecular wires. Appl. Phys. Lett. 84(20), 4008 (2004)

    Article  CAS  Google Scholar 

  89. L.H. Yu, C.D. Zangmeister, J.G. Kushmerick, Origin of discrepancies in inelastic electron tunneling spectra of molecular junctions. Phys. Rev. Lett. 98, 206803 (2007)

    Article  CAS  Google Scholar 

  90. H. Song, Y. Kim, H. Jeong, M.A. Reed, T. Lee, Coherent tunneling transport in molecular junctions. J. Phys. Chem. C 114, 20431–20435 (2010)

    Article  CAS  Google Scholar 

  91. S. Guo, J. Hihath, I. Díez-Pérez, N. Tao, Measurement and statistical analysis of single-molecule current-voltage characteristics, transition voltage spectroscopy, and tunneling barrier height. J. Am. Chem. Soc. 133, 19189–97 (2011)

    Article  CAS  Google Scholar 

  92. N. Clément, G. Patriarche, K. Smaali, F. Vaurette, K. Nishiguchi, D. Troadec, A. Fujiwara, D. Vuillaume, Large array of sub-10-nm single-grain Au nanodots for use in nanotechnology. Small 7, 2607–13 (2011)

    Article  CAS  Google Scholar 

  93. G. Wang, Y. Kim, S.-I. Na, Y.H. Kahng, J. Ku, S. Park, Y.H. Jang, D.-Y. Kim, T. Lee, Investigation of the transition voltage spectra of molecular junctions considering frontier molecular orbitals and the asymmetric coupling effect. J. Phys. Chem. C 115, 17979–17985 (2011)

    Article  CAS  Google Scholar 

  94. Y. Qi, O. Yaffe, E. Tirosh, A. Vilan, D. Cahen, A. Kahn, Filled and empty states of alkanethiol monolayer on Au (111): Fermi level asymmetry and implications for electron transport. Chem. Phys. Lett. 511, 344–347 (2011)

    Article  CAS  Google Scholar 

  95. M. Araidai, M. Tsukada, Theoretical calculations of electron transport in molecular junctions: Inflection behavior in Fowler-Nordheim plot and its origin. Phys. Rev. B 81, 235114 (2010)

    Article  CAS  Google Scholar 

  96. F. Mirjani, J.M. Thijssen, S.J. van der Molen, Advantages and limitations of transition voltage spectroscopy: a theoretical analysis. Phys. Rev. B 84, 115402 (2011)

    Article  CAS  Google Scholar 

  97. A. Vilan, D. Cahen, E. Kraisler, Rethinking transition voltage spectroscopy within a generic Taylor expansion view. ACS Nano 7, 695–706 (2013)

    Article  CAS  Google Scholar 

  98. I. Baldea, Transition voltage spectroscopy in vacuum break junction: possible role of surface states. EPL (Europhys. Lett.) 98, 17010 (2012)

    Google Scholar 

  99. A.R. Rocha, V.M. García-Suárez, S.W. Bailey, C.J. Lambert, J. Ferrer, S. Sanvito, Towards molecular spintronics. Nat. Mater. 4, 335–339 (2005)

    Article  CAS  Google Scholar 

  100. S. Mandal, R. Pati, What determines the sign reversal of magnetoresistance in a molecular tunnel junction? ACS Nano 6, 3580–3588 (2012)

    Article  CAS  Google Scholar 

  101. H. Kondo, T. Ohno, Spintronic transport of a non-magnetic molecule between magnetic electrodes. Appl. Phys. Lett. 103(23), 233115 (2013)

    Article  CAS  Google Scholar 

  102. S. Goumri-Said, M.B. Kanoun, A.A. Manchon, U. Schwingenschlögl, Spin-polarization reversal at the interface between benzene and Fe(100). J. Appl. Phys. 113, 013905 (2013)

    Article  CAS  Google Scholar 

  103. S.H. Liang, D.P. Liu, L.L. Tao, X.F. Han, H. Guo, Organic magnetic tunnel junctions: the role of metal-molecule interface. Phys. Rev. B 86(22), 224419 (2012)

    Article  CAS  Google Scholar 

  104. N. Gorjizadeh, S.Y. Quek, Interface effects on tunneling magnetoresistance in organic spintronics with flexible amine-Au links. Nanotechnology 24, 415201 (2013)

    Google Scholar 

  105. X. Wang, Z. Zhu, A. Manchon, U. Schwingenschlögl, Peculiarities of spin polarization inversion at a thiophene/cobalt interface. Appl. Phys. Lett. 102, 111604–111644 (2013)

    Google Scholar 

  106. K. Ulman, S. Narasimhan, A. Delin, Tuning spin transport properties and molecular magnetoresistance through contact geometry. J. Chem. Phys. 140, 044716 (2014)

    Article  CAS  Google Scholar 

  107. Z. Ning, Y. Zhu, J. Wang, H. Guo, Quantitative analysis of nonequilibrium spin injection into molecular tunnel junctions. Phys. Rev. Lett. 100(5), 56803 (2008)

    Article  CAS  Google Scholar 

  108. A.R. Rocha, S. Sanvito, Resonant magnetoresistance in organic spin valves. J. Appl. Phys. 101(9), 09B102 (2007)

    Article  CAS  Google Scholar 

  109. C.T. Black, C.B. Murray, R.L. Sandstrom, S. Sun, Spin-dependent tunneling in self-assembled cobalt-nanocrystal superlattices. Science 290, 1131–4 (2000)

    Article  CAS  Google Scholar 

  110. S. Wang, F.J. Yue, J. Shi, Y.J. Shi, A. Hu, Y.W. Du, D. Wu, Room-temperature spin-dependent tunneling through molecules. Appl. Phys. Lett. 98, 172501 (2011)

    Article  CAS  Google Scholar 

  111. J. Dugay, R.P. Tan, A. Meffre, T. Blon, L.-M. Lacroix, J. Carrey, P.F. Fazzini, S. Lachaize, B. Chaudret, M. Respaud, Room-temperature tunnel magnetoresistance in self-assembled chemically synthesized metallic iron nanoparticles. Nano Lett. 11(12), 5128–5134 (2011)

    Article  CAS  Google Scholar 

  112. R. Yamada, M. Noguchi, H. Tada, Magnetoresistance of single molecular junctions measured by a mechanically controllable break junction method. Appl. Phys. Lett. 98, 053110 (2011)

    Article  CAS  Google Scholar 

  113. A.N. Pasupathy, R.C. Bialczak, J. Martinek, J.E. Grose, L.A.K. Donev, P.L. McEuen, D.C. Ralph, The Kondo effect in the presence of ferromagnetism. Science 306, 86–89 (2004)

    Article  CAS  Google Scholar 

  114. E.Y. Tsymbal, A. Sokolov, I.F. Sabirianov, B. Doudin, Resonant inversion of tunneling magnetoresistance. Phys. Rev. Lett. 90(18), 186602 (2003)

    Article  CAS  Google Scholar 

  115. J. Zhang, R.M. White, Voltage dependence of magnetoresistance in spin dependent tunneling junctions. J. Appl. Phys. 83, 6512 (1998)

    Article  CAS  Google Scholar 

  116. W. Wang, T. Lee, I. Kretzschmar, M.A. Reed, Inelastic electron tunneling spectroscopy of an alkanedithiol self-assembled monolayer. Nano Lett. 4, 643–646 (2004)

    Article  CAS  Google Scholar 

  117. J.G. Kushmerick, J. Lazorcik, C.H. Patterson, R. Shashidhar, D.S. Seferos, G.C. Bazan, Vibronic contributions to charge transport across molecular junctions. Nano Lett. 4, 639–642 (2004)

    Article  CAS  Google Scholar 

  118. Y. Ando, J. Murai, T. Miyashita, T. Miyazaki, Spin dependent tunneling in 80NiFe/LB lm with ferrocene and tris(bipyridine)ruthenium derivatives/Co junctions. Thin Solid Films 331, 158–164 (1998)

    Article  CAS  Google Scholar 

  119. T.X. Wang, H.X. Wei, Z.M. Zeng, X.F. Han, Z.M. Hong, G.Q. Shi, Magnetic/nonmagnetic/magnetic tunnel junction based on hybrid organic Langmuir-Blodgett-films. Appl. Phys. Lett. 88(24), 242505 (2006)

    Article  CAS  Google Scholar 

  120. J.-C. Tai, J.-C. Huang, Y.-M. Chang, K.-S. Li, W.-C. Chiang, M.-T. Lin, Applying large-area molecular technology to improve magnetoresistive performance of hybrid molecular spin valves. Appl. Phys. Express 5(6), 63006 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Galbiati .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Galbiati, M. (2016). Introduction to Self-Assembled Monolayers. In: Molecular Spintronics. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-22611-8_4

Download citation

Publish with us

Policies and ethics