Skip to main content

Constraining SUSY Scenarios Using Simplified Models

  • Chapter
  • First Online:
Book cover Constraining Supersymmetric Models

Part of the book series: Springer Theses ((Springer Theses))

  • 315 Accesses

Abstract

The experimental results of direct SUSY searches are typically presented as limits in simplified versions of the full SUSY models, with only a few parameters. The reinterpretation of the results in the context of other models is in principle possible, however time-consuming and computationally very intensive. This chapter presents a new computer tool, called Fastlim, which facilitates and speeds up the calculation of limits on the parameter space of new physics models form direct LHC searches. We explain in detail how the program works. Further we present a first application of Fastlim, where we study the constraints from LHC searches for SUSY particles on the parameter space of natural SUSY models, a class of SUSY models where the particles closely tied to the Higgs boson mass are relatively light, while the rest of the particle spectrum is assumed to be beyond the reach of the LHC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There is a program, called ATOM [22], which takes an event file as input and evaluates the efficiencies, for a set of well-validated analyses, taking detector effects into account. A similar program is CheckMate [23]. For our work we make use of the ATOM framework, as we will explain below.

  2. 2.

    In certain cases, topologies with more than three SUSY particles may be approximated by two or three dimensional topologies, as will be described in Sect. 8.3.3.

  3. 3.

    Here we make use of the code PySLHA [24] to extract the masses and branching ratios from the SLHA file.

  4. 4.

    We do not consider the SUSY particle decays into three or more SUSY particles.

  5. 5.

    A possibility to take deviations in Higgs branching ratios from the SM values into account can be included in future Fastlim releases.

  6. 6.

    This is in principle possible, however many SUSY models require a large splitting in the stop sector in order to predict a realistic value for the Higgs boson mass.

  7. 7.

    In the cases where no cut-flow tables were available, we validated our implementations by checking two independent implementations or by comparing to the simplified model exclusion plots.

  8. 8.

    Throughout this section we set: \(M_1=M_2=M_{{Q,D,U}_{12}}=M_{D_3}=3000\,\text { GeV},\,\,X_b=X_t\).

  9. 9.

    Here (and more generally in the discussion of the plots in this section) the exclusion refers to the \(95\,\%\) CL exclusion given by the analysis that is most sensitive in that region.

  10. 10.

    Radiative electroweak symmetry breaking was briefly discussed in Sect. 2.2.10. In this formula the running of the soft masses is neglected.

References

  1. S. Sekmen, S. Kraml, J. Lykken, F. Moortgat, S. Padhi et al., Interpreting LHC SUSY searches in the phenomenological MSSM. JHEP 1202, 075 (2012). arXiv:1109.5119

  2. M. Cahill-Rowley, J. Hewett, A. Ismail, T. Rizzo, pMSSM studies at the 7, 8 and 14 TeV LHC. arXiv:1307.8444

  3. A. Arbey, M. Battaglia, F. Mahmoudi, Supersymmetry with light dark matter confronting the recent CDMS and LHC results. Phys. Rev. D88, 095001 (2013). arXiv:1308.2153

  4. J. Reuter, M. Tonini, M. de Vries, Littlest Higgs with T-parity: status and prospects. arXiv:1310.2918

  5. M. Papucci, K. Sakurai, A. Weiler, L. Zeune, Fastlim: a fast LHC limit calculator. arXiv:1402.0492

  6. C. Gutschow, Z. Marshall, Setting limits on supersymmetry using simplified models. arXiv:1202.2662

  7. N. Arkani-Hamed, P. Schuster, N. Toro, J. Thaler, L.-T. Wang et al., MARMOSET: the path from LHC data to the new standard model via on-shell effective theories. arXiv:hep-ph/0703088

  8. D.S. Alves, E. Izaguirre, J.G. Wacker, Where the sidewalk ends: jets and missing energy search strategies for the 7 TeV LHC. JHEP 1110, 012 (2011). arXiv:1102.5338

  9. P.Z. Skands, B. Allanach, H. Baer, C. Balazs, G. Belanger et al., SUSY Les Houches accord: interfacing SUSY spectrum calculators, decay packages, and event generators. JHEP 0407, 036 (2004). arXiv:hep-ph/0311123

    Google Scholar 

  10. W. Beenakker, R. Hopker, M. Spira, PROSPINO: a program for the production of supersymmetric particles in next-to-leading order QCD. arXiv:hep-ph/9611232

  11. W. Beenakker, S. Brensing, M. Krämer, A. Kulesza, E. Laenen et al., Squark and gluino hadroproduction. Int. J. Mod. Phys. A26, 2637–2664 (2011). arXiv:1105.1110

    Google Scholar 

  12. W. Beenakker, S. Brensing, M. Krämer, A. Kulesza, E. Laenen et al., Soft-gluon resummation for squark and gluino hadroproduction. JHEP 0912, 041 (2009). arXiv:0909.4418

    Google Scholar 

  13. A. Kulesza, L. Motyka, Soft gluon resummation for the production of gluino-gluino and squark-antisquark pairs at the LHC. Phys. Rev. D80, 095004 (2009). arXiv:0905.4749

  14. A. Kulesza, L. Motyka, Threshold resummation for squark-antisquark and gluino-pair production at the LHC. Phys. Rev. Lett. 102, 111802 (2009). arXiv:0807.2405

  15. W. Beenakker, R. Hopker, M. Spira, P. Zerwas, Squark and gluino production at Hadron colliders. Nucl. Phys. B492, 51–103 (1997). arXiv:hep-ph/9610490

    Google Scholar 

  16. M. Bahr, S. Gieseke, M. Gigg, D. Grellscheid, K. Hamilton et al., Herwig++ physics and manual. Eur. Phys. J. C58, 639–707 (2008). arXiv:0803.0883

    Google Scholar 

  17. T. Sjostrand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 physics and manual. JHEP 0605, 026 (2006). arXiv:hep-ph/0603175

    Google Scholar 

  18. T. Sjostrand, S. Mrenna, P.Z. Skands, A brief Introduction to PYTHIA 8.1. Comput. Phys. Commun. 178, 852–867 (2008). arXiv:0710.3820

    Google Scholar 

  19. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, T. Stelzer, MadGraph 5: going beyond. JHEP 1106, 128 (2011). arXiv:1106.0522

  20. S. Ovyn, X. Rouby, V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment. arXiv:0903.2225

  21. J. Conway et al., www.physics.ucdavis.edu/~conway/research/software/pgs/pgs4-general.htm

  22. I.-W. Kim, M. Papucci, K. Sakurai, A. Weiler, ATOM: automated tests of models, in preparation

    Google Scholar 

  23. M. Drees, H. Dreiner, D. Schmeier, J. Tattersall, J.S. Kim, CheckMATE: confronting your favourite new physics model with LHC data. arXiv:1312.2591

  24. A. Buckley, PySLHA: a Pythonic interface to SUSY Les Houches Accord data. arXiv:1305.4194

  25. A.L. Read, Presentation of search results: the CL(s) technique. J. Phys. G28, 2693–2704 (2002)

    Article  ADS  Google Scholar 

  26. M. Krämer, A. Kulesza, R. van der Leeuw, M. Mangano, S. Padhi et al., Supersymmetry production cross sections in pp collisions at \(\sqrt{s}=7\) TeV. arXiv:1206.2892

  27. See: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/SUSYCrossSections

  28. See: http://fastlim.web.cern.ch/fastlim/

  29. M.L. Mangano, M. Moretti, F. Piccinini, M. Treccani, Matching matrix elements and shower evolution for top-quark production in hadronic collisions. JHEP 0701, 013 (2007). arXiv:hep-ph/0611129

  30. M. Papucci, J.T. Ruderman, A. Weiler, Natural SUSY endures. JHEP 1209, 035 (2012). arXiv:1110.6926

  31. C. Brust, A. Katz, S. Lawrence, R. Sundrum, SUSY, the third generation and the LHC. JHEP 1203, 103 (2012). arXiv:1110.6670

  32. B. Allanach, B. Gripaios, Hide and seek with natural supersymmetry at the LHC. JHEP 1205, 062 (2012). arXiv:1202.6616

  33. K. Kowalska, E.M. Sessolo, Natural MSSM after the LHC 8 TeV run. Phys. Rev. D88, 075001 (2013). arXiv:1307.5790

  34. H. Baer, V. Barger, P. Huang, X. Tata, Natural supersymmetry: LHC, dark matter and ILC searches. JHEP 1205, 109 (2012). arXiv:1203.5539

  35. J. Berger, J. Hubisz, M. Perelstein, A fermionic top partner: naturalness and the LHC. JHEP 1207, 016 (2012). arXiv:1205.0013

  36. H. Baer, V. Barger, P. Huang, A. Mustafayev, X. Tata, Radiative natural SUSY with a 125 GeV Higgs boson. Phys. Rev. Lett. 109, 161802 (2012). arXiv:1207.3343

  37. O. Buchmueller, J. Marrouche, Universal mass limits on gluino and third-generation squarks in the context of Natural-like SUSY spectra. arXiv:1304.2185

  38. J.A. Evans, Y. Kats, D. Shih, M.J. Strassler, Toward full LHC coverage of natural supersymmetry. arXiv:1310.5758

  39. L.J. Hall, D. Pinner, J.T. Ruderman, A natural SUSY Higgs near 126 GeV. JHEP 1204, 131 (2012). arXiv:1112.2703

  40. A. Djouadi, M. Mühlleitner, M. Spira, Decays of supersymmetric particles: the program SUSY-HIT (SUspect-SdecaY-Hdecay-InTerface). Acta Phys. Pol. B38, 635–644 (2007). arXiv:hep-ph/0609292

  41. ATLAS Collaboration ATLAS-CONF-2013-024

    Google Scholar 

  42. H. Baer, V. Barger, P. Huang, D. Mickelson, A. Mustafayev et al., Radiative natural supersymmetry: reconciling electroweak fine-tuning and the Higgs boson mass. Phys. Rev. D87(11), 115028 (2013). arXiv:1212.2655

  43. M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak et al., The Higgs boson masses and mixings of the complex MSSM in the Feynman-diagrammatic approach. JHEP 0702, 047 (2007). arXiv:hep-ph/0611326

    Google Scholar 

  44. For this coordinating effort, see: https://indico.cern.ch/conferenceDisplay.py?confId=272303

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Zeune .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zeune, L. (2016). Constraining SUSY Scenarios Using Simplified Models. In: Constraining Supersymmetric Models . Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-22228-8_8

Download citation

Publish with us

Policies and ethics