Skip to main content

Fitting the MSSM to the Observed Higgs Signal

  • Chapter
  • First Online:
Constraining Supersymmetric Models

Part of the book series: Springer Theses ((Springer Theses))

  • 318 Accesses

Abstract

In order to investigate whether, and if so how much, the MSSM can improve the theoretical description of the experimental data compared to the SM, we fit the experimentally measured Higgs decay rates, the Higgs mass and low-energy observables under the hypothesis that the light or the heavy CP-even Higgs of the MSSM is the observed state at 126 GeV. The fit quality in the MSSM, for both Higgs interpretations, is compared to the SM. We determine the regions of the MSSM parameter space which are favoured by the experimental data, and we demonstrate some features of the best-fit point.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The reader should keep in mind here (and in the following) that the point density has no statistical meaning.

  2. 2.

    This HiggsBounds version contains besides the results in the last publicly available version (version 4.1.0) the CMS result from the search for neutral Higgs bosons decaying into \(\tau \) pairs [7].

  3. 3.

    The measured rates, which are taken into account, can be seen in Figs. 7.1 and 7.3 where we present the results, see discussion below.

  4. 4.

    We note that the Belle Collaboration has reported a new (lower) measurement of \(\mathrm{BR}(B_u \rightarrow \tau \nu _\tau )\) that is in better agreement with the SM (and also with models with two Higgs doublets, like the MSSM) [41]. While we do not take this new result into account in our overall fit results, in the following we do comment briefly on its possible effects. The measurement of \(\mathrm{BR}(B_s \rightarrow \mu ^- \mu ^+)\) [42, 43] became public shortly after this analysis was conducted. Therefore here only an upper limit on \(\mathrm{BR}(B_s\rightarrow \mu ^+\mu ^-)\) is included. Both of these results are included in the updated analysis. We do not include the BaBar result on \(\bar{B} \rightarrow D^{(*)}\tau ^-\bar{\nu }_\tau \) [44], which shows (combining the D and \(D^{(*)}\) measurements) a \(3.4\,\sigma \) deviation from the SM prediction, which can not be explained in the MSSM either.

  5. 5.

    The Mathematica code is too slow to be included in a scan with \(\mathcal{O}(10^7)\) points.

  6. 6.

    The contributions from light sleptons can even be significantly larger (up to \({\sim }60\) MeV) when all sleptons have masses just above the LEP limit as we have shown in Chap. 5, which requires \(M_{\tilde{E}}=M_{\tilde{L}} \sim 100\) GeV together with a small mixing in the slepton sector (the mixing has to be quite small to keep \(m_{\tilde{\tau }_1}\) above the LEP limit). Such parameter points are not present here, since we choose \(M_{\tilde{l}_3} > 200\) GeV and \(M_{\tilde{E}_{1,2}}=M_{\tilde{L}_{1,2}} = 300\) GeV (\(M_{\tilde{E}_{1,2}}=M_{\tilde{L}_{1,2}} = M_{\tilde{l}_3}\)) in the original (updated) analysis. A similar argument holds for the chargino/neutralino contributions, since we choose \(M_2>200\) GeV.

  7. 7.

    The measured rates, which are taken into account, can be seen in Fig. 7.2 where we present the results, which will be discussed below.

  8. 8.

    The SM \(M_W\) value is slightly different from the one in Table 7.2, due to small changes in the input values for SM parameters. We set the SM parameters here to the FeynHiggs default values. While here the \(M_W\) prediction in the MSSM is obtained from FeynHiggs, we plan to use the Fortran code presented in Chap. 5 in a future update of this analysis.

  9. 9.

    We did not update the analysis for the heavy Higgs case yet.

  10. 10.

    The p-value provides information about the goodness of a fit, by quantifying the discrepancy between the observed data and what one would expect from a certain hypothesis (e.g. a certain model: SM, MSSM light Higgs case,...). To be more precise it gives the probability that a test statistic is in equal or worse agreement with the expectation from the hypothesis than the actual data. Thus large p-values show a good agreement of the expectation from the hypothesis with the data, whereas small p-values correspond to a poor agreement. More details can be found e.g. in the “Statistics” review in Ref. [25] .

  11. 11.

    The pull values are defined as (predicted value - observed value)/(uncertainty).

  12. 12.

    In the updated fit, points with large \(\tan \beta \) values that have a small \(\chi ^2_{(g-2)_{\mu }}\) have typically \(M_{\tilde{E}_{1,2}}=M_{\tilde{L}_{1,2}} \gtrsim 400\) GeV.

  13. 13.

    In Fig. 7.15 we extended the plotted range to large \(m_{\tilde{t}_1}\) values, to include the best-fit point in the plot. The edges for large \(m_{\tilde{t}_1}\) indicate the upper scan limits. The same feature would be visible in Fig. 7.14 if the plotting range were extended to larger \(m_{\tilde{t}_1}\) masses.

  14. 14.

    The dominant contributions to \(\Delta _b\) beyond one-loop order are the QCD corrections, given in [83]. Those two-loop contributions are not included in our analysis.

References

  1. ALEPH, DELPHI, L3, OPAL, LEP Working Group for Higgs Boson Searches, S. Schael, et al., Search for neutral MSSM Higgs bosons at LEP, Eur. Phys. J. C47 (2006) 547–587. hep-ex/0602042

  2. Tevatron New Phenomena and Higgs Working Group, D. Benjamin, et al., Combined CDF and DØ Upper Limits on MSSM Higgs Boson Production in tau-tau Final States with up to 2.2 fb\(^{-1}\). arXiv:1003.3363

  3. CDF, DØ Collaborations, T. Aaltonen, et al., Search for neutral Higgs bosons in events with multiple bottom quarks at the tevatron. Phys. Rev. D86 (2012) 091101. arXiv:1207.2757

  4. ATLAS Collaboration. See: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults

  5. ATLAS Collaboration, ATLAS-CONF-2012-094

    Google Scholar 

  6. ATLAS Collaboration, ATLAS-CONF-2012-011

    Google Scholar 

  7. CMS Collaboration, CMS-PAS-HIG-13-021

    Google Scholar 

  8. CMS Collaboration, S. Chatrchyan et al., Search for neutral MSSM Higgs bosons decaying to Tau Pairs in \(pp\) collisions at \(\sqrt{s}=7\) TeV. Phys. Rev. Lett. 106, 231801 (2011). arXiv:1104.1619

  9. CMS Collaboration, S. Chatrchyan et al., Search for a light charged Higgs boson in top quark decays in \(pp\) collisions at \(\sqrt{s}=7\) TeV. JHEP 1207, 143 (2012). arXiv:1205.5736

  10. CMS Collaboration, S. Chatrchyan et al., Search for a Higgs boson decaying into a b-quark pair and produced in association with b quarks in proton-proton collisions at 7 TeV. Phys. Lett. B722, 207–232 (2013). arXiv:1302.2892

  11. CMS Collaboration, See: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG

  12. ATLAS Collaboration, ATLAS-CONF-2013-090

    Google Scholar 

  13. M.S. Carena, S. Heinemeyer, C. Wagner, G. Weiglein, Suggestions for improved benchmark scenarios for Higgs boson searches at LEP-2. arXiv:hep-ph/9912223

  14. M.S. Carena, S. Heinemeyer, C. Wagner, G. Weiglein, Suggestions for benchmark scenarios for MSSM Higgs boson searches at Hadron colliders. Eur. Phys. J. C26, 601–607 (2003). hep-ph/0202167

    Google Scholar 

  15. M.S. Carena, S. Heinemeyer, C. Wagner, G. Weiglein, MSSM Higgs boson searches at the Tevatron and the LHC: Impact of different benchmark scenarios. Eur. Phys. J. C45, 797–814 (2006). hep-ph/0511023

    Google Scholar 

  16. M. Carena, S. Heinemeyer, O. Stål, C. Wagner, G. Weiglein, MSSM Higgs boson searches at the LHC: benchmark scenarios after the discovery of a Higgs-like particle. Eur. Phys. J. C73, 2552 (2013). arXiv:1302.7033

  17. S. AbdusSalam, B. Allanach, H. Dreiner, J. Ellis, U. Ellwanger et al., Benchmark models, planes, lines and points for future SUSY searches at the LHC. Eur. Phys. J. C71, 1835 (2011). arXiv:1109.3859

  18. A. Arbey, M. Battaglia, F. Mahmoudi, Light neutralino dark matter in the pMSSM: implications of LEP, LHC and dark matter searches on SUSY particle spectra. Eur. Phys. J. C72, 2169 (2012). arXiv:1205.2557

  19. A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi, The Higgs sector of the phenomenological MSSM in the light of the Higgs boson discovery. JHEP 1209, 107 (2012). arXiv:1207.1348

    Article  ADS  Google Scholar 

  20. P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak, G. Weiglein, HiggsSignals: confronting arbitrary higgs sectors with measurements at the tevatron and the LHC. arXiv:1305.1933

  21. S. Heinemeyer, W. Hollik, G. Weiglein, The masses of the neutral CP even Higgs bosons in the MSSM: Accurate analysis at the two loop level. Eur. Phys. J. C9, 343–366 (1999). hep-ph/9812472

  22. S. Heinemeyer, W. Hollik, G. Weiglein, FeynHiggs: A program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM. Comput. Phys. Commun. 124, 76–89 (2000). hep-ph/9812320

    Google Scholar 

  23. G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. Weiglein, Towards high precision predictions for the MSSM Higgs sector. Eur. Phys. J. C28, 133–143 (2003). hep-ph/0212020

    Google Scholar 

  24. M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak et al., The Higgs boson masses and mixings of the complex MSSM in the Feynman-diagrammatic approach. JHEP 0702, 047 (2007). hep-ph/0611326

    Google Scholar 

  25. Particle Data Group, J. Beringer, et al., Review of Particle Physics (RPP), Phys. Rev. D86 (2012) 010001. (And 2013 partial update for the 2014 edition)

    Google Scholar 

  26. P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams, HiggsBounds: confronting arbitrary Higgs sectors with exclusion bounds from LEP and the tevatron. Comput. Phys. Commun. 181, 138–167 (2010). arXiv:0811.4169

    Article  ADS  MATH  Google Scholar 

  27. P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams, HiggsBounds 2.0.0: confronting neutral and charged Higgs sector predictions with exclusion bounds from LEP and the tevatron. Comput. Phys. Commun. 182, 2605–2631 (2011). arXiv:1102.1898

    Article  ADS  MATH  Google Scholar 

  28. J. Espinosa, C. Grojean, M. Mühlleitner, M. Trott, First glimpses at Higgs’ face. JHEP 1212, 045 (2012). arXiv:1207.1717

    Article  ADS  Google Scholar 

  29. LHC Higgs Cross Section Working Group, S. Dittmaier, et al., Handbook of LHC Higgs cross sections: 1. inclusive observables. arXiv:1101.0593

  30. S. Dittmaier, S. Dittmaier, C. Mariotti, G. Passarino, R. Tanaka, et al.,Handbook of LHC Higgs cross sections: 2. differential distributions. arXiv:1201.3084

  31. See: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections

  32. D. de Florian, M. Grazzini, Higgs production through gluon fusion: updated cross sections at the Tevatron and the LHC. Phys. Lett. B674, 291–294 (2009). arXiv:0901.2427. See: http://theory.fi.infn.it/grazzini/hcalculators.html

  33. T. Hahn, S. Heinemeyer, F. Maltoni, G. Weiglein, S. Willenbrock, SM and MSSM Higgs boson production cross-sections at the Tevatron and the LHC, hep-ph/0607308

  34. T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, FeynHiggs 2.7. Nucl. Phys. Proc. Suppl. 205-206 (2010) 152–157. arXiv:1007.0956

    Google Scholar 

  35. R. Bonciani, G. Degrassi, A. Vicini, Scalar particle contribution to Higgs production via gluon fusion at NLO. JHEP 0711, 095 (2007). arXiv:0709.4227

    Article  ADS  Google Scholar 

  36. U. Aglietti, R. Bonciani, G. Degrassi, A. Vicini, Analytic results for virtual QCD corrections to Higgs production and decay. JHEP 0701, 021 (2007). hep-ph/0611266

    Google Scholar 

  37. A. Dedes, P. Slavich, Two loop corrections to radiative electroweak symmetry breaking in the MSSM. Nucl. Phys. B657, 333–354 (2003). hep-ph/0212132

    Google Scholar 

  38. A. Dedes, G. Degrassi, P. Slavich, On the two loop Yukawa corrections to the MSSM Higgs boson masses at large tan beta. Nucl. Phys. B672, 144–162 (2003). hep-ph/0305127

  39. S. Heinemeyer, W. Hollik, G. Weiglein, Decay widths of the neutral CP even MSSM Higgs bosons in the Feynman diagrammatic approach. Eur. Phys. J. C16,139–153 (2000). hep-ph/0003022

  40. K.E. Williams, H. Rzehak, G. Weiglein, Higher order corrections to Higgs boson decays in the MSSM with complex parameters. Eur. Phys. J. C71, 1669 (2011). arXiv:1103.1335

  41. Belle Collaboration, I. Adachi et al., Measurement of \(B^- \rightarrow \tau ^- \bar{\nu }_\tau \) with a hadronic tagging method using the full data sample of Belle. Phys. Rev. Lett. 110, 131801 (2013). arXiv:1208.4678

  42. LHCb Collaboration, R. Aaij et al., Measurement of the \(B^0_s \rightarrow \mu ^+ \mu ^-\) decays at the LHCb experiment. Phys. Rev. Lett. 111, 101805 (2013). arXiv:1307.5024

  43. CMS, LHCb Collaborations, Combination of results on the rare decays \(B^0_{(s)} \rightarrow \mu ^+\mu ^-\) from the CMS and LHCb experiments, Technical report CMS-PAS-BPH-13-007. CERN-LHCb-CONF-2013-012 (CERN, Geneva, Jul, 2013)

    Google Scholar 

  44. BaBar Collaboration, J. Lees et al., Evidence for an excess of \(\bar{B} \rightarrow D^{(*)} \tau ^-\bar{\nu }_\tau \) decays. Phys. Rev. Lett. 109, 101802 (2012). arXiv:1205.5442

  45. F. Mahmoudi, SuperIso: a program for calculating the isospin asymmetry of \(B \rightarrow K^* \gamma \) in the MSSM. Comput. Phys. Commun. 178, 745–754 (2008). arXiv:0710.2067

    Article  ADS  MATH  Google Scholar 

  46. F. Mahmoudi, SuperIso v2.3: a program for calculating flavor physics observables in supersymmetry. Comput. Phys. Commun. 180, 1579–1613 (2009). arXiv:0808.3144

    Article  ADS  Google Scholar 

  47. F. Mahmoudi, SuperIso v3.0, flavor physics observables calculations: extension to NMSSM. Comput. Phys. Commun. 180, 1718–1719 (2009)

    Article  ADS  Google Scholar 

  48. M. Misiak, M. Steinhauser, NNLO QCD corrections to the \(\bar{B} \rightarrow X_s \gamma \). Nucl. Phys. B764, 62–82 (2007). hep-ph/0609241

  49. G. Degrassi, G. Giudice, QED logarithms in the electroweak corrections to the muon anomalous magnetic moment. Phys. Rev. D 58, 053007 (1998). hep-ph/9803384

  50. S. Heinemeyer, D. Stöckinger, G. Weiglein, Two loop SUSY corrections to the anomalous magnetic moment of the muon. Nucl. Phys. B690, 62–80 (2004). hep-ph/0312264

    Google Scholar 

  51. S. Heinemeyer, D. Stöckinger, G. Weiglein, Electroweak and supersymmetric two-loop corrections to \((g-2)_{\mu }\). Nucl. Phys. B699, 103–123 (2004). hep-ph/0405255

    Google Scholar 

  52. M. Awramik, M. Czakon, A. Freitas, G. Weiglein, Precise prediction for the W boson mass in the standard model. Phys. Rev. D69, 053006 (2004). hep-ph/0311148

  53. A. Djouadi, P. Gambino, S. Heinemeyer, W. Hollik, C. Junger, G. Weiglein, Supersymmetric contributions to electroweak precision observables: QCD corrections. Phys. Rev. Lett. 78, 3626 (1997). hep-ph/9612363

    Google Scholar 

  54. A. Djouadi, P. Gambino, S. Heinemeyer, W. Hollik, C. Junger, G. Weiglein, Leading QCD corrections to scalar quark contributions to electroweak precision observables. Phys. Rev. D57, 4179 (1998). hep-ph/9710438

    Google Scholar 

  55. S. Heinemeyer, W. Hollik, G. Weiglein, Electroweak precision observables in the minimal supersymmetric standard model. Phys. Rep. 425, 265–368 (2006). hep-ph/0412214

    Google Scholar 

  56. S. Heinemeyer, W. Hollik, G. Weiglein, L. Zeune, Implications of LHC search results on the W boson mass prediction in the MSSM. JHEP 1312, 084 (2013). arXiv:1311.1663

    Article  ADS  Google Scholar 

  57. Heavy Flavor Averaging Group, Y. Amhis, et al., Averages of B-Hadron, C-Hadron, and Tau-lepton properties as of early 2012. arXiv:1207.1158. See: http://www.slac.stanford.edu/xorg/hfag

  58. LHCb, CMS, ATLAS Collaborations, LHCb-CONF-2012-017, CMS-PAS-BPH-12-009, ATLAS-CONF-2012-061

    Google Scholar 

  59. Muon \(g-2\) Collaboration, G. Bennett et al., Measurement of the negative muon anomalous magnetic moment to 0.7 ppm. Phys. Rev. Lett. 92 (2004) 161802. hep-ex/0401008

  60. M. Davier, A. Hoecker, B. Malaescu, Z. Zhang, Reevaluation of the hadronic contributions to the Muon \(g-2\) and to \(\alpha (M_Z^2)\). Eur. Phys. J. C71, 1515 (2011). arXiv:1010.4180

  61. Muon G-2 Collaboration, G. Bennett et al., Final report of the Muon E821 anomalous magnetic moment measurement at BNL. Phys. Rev. D73, 072003 (2006). hep-ex/0602035

  62. Tevatron Electroweak Working Group, 2012 Update of the combination of CDF and DØ results for the mass of the W boson. arXiv:1204.0042

  63. ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group, S. Schael, et al., Precision electroweak measurements on the \(Z\) resonance. Phys. Rep. 427, 257–454 (2006). hep-ex/0509008. See: http://lepewwg.web.cern.ch/LEPEWWG/

  64. P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak, G. Weiglein, Probing the standard model with Higgs signal rates from the Tevatron, the LHC and a future ILC. arXiv:1403.1582

  65. Heavy Flavor Averaging Group, See: www.slac.stanford.edu/xorg/hfag/rare/2013/radll/OUTPUT/HTML/radll_table7.html

  66. U. Haisch, F. Mahmoudi, MSSM: cornered and correlated. JHEP 1301, 061 (2013). arXiv:1210.7806

    Article  ADS  Google Scholar 

  67. ATLAS Collaboration, ATLAS-CONF-2013-108

    Google Scholar 

  68. CMS Collaboration, S. Chatrchyan et al., Evidence for the 125 GeV Higgs boson decaying to a pair of \(\tau \) leptons. arXiv:1401.5041

  69. CMS Collaboration, CMS-PAS-HIG-11-029

    Google Scholar 

  70. S. Heinemeyer, O. Stål, G. Weiglein, Interpreting the LHC Higgs search results in the MSSM. Phys. Lett. B710, 201–206 (2012). arXiv:1112.3026

    Google Scholar 

  71. M. Drees, A supersymmetric explanation of the excess of Higgs-like events at the LHC and at LEP. Phys. Rev. D86, 115018 (2012). arXiv:1210.6507

  72. J. Frere, D. Jones, S. Raby, Fermion masses and induction of the weak scale by supergravity. Nucl. Phys. B222, 11 (1983)

    Google Scholar 

  73. M. Claudson, L.J. Hall, I. Hinchliffe, Low-energy supergravity: false vacua and vacuous predictions. Nucl. Phys. B228, 501 (1983)

    Google Scholar 

  74. C. Kounnas, A. Lahanas, D.V. Nanopoulos, M. Quiros, Low-energy behavior of realistic locally supersymmetric grand unified theories. Nucl. Phys. B236, 438 (1984)

    Google Scholar 

  75. J. Gunion, H. Haber, M. Sher, Charge/color breaking minima and a-parameter bounds in supersymmetric models. Nucl. Phys. B306, 1 (1988)

    Google Scholar 

  76. J. Casas, A. Lleyda, C. Munoz, Strong constraints on the parameter space of the MSSM from charge and color breaking minima. Nucl. Phys. B471, 3–58 (1996). hep-ph/9507294

    Google Scholar 

  77. P. Langacker, N. Polonsky, Implications of Yukawa unification for the Higgs sector in supersymmetric grand unified models. Phys. Rev. D50, 2199–2217 (1994). hep-ph/9403306

    Google Scholar 

  78. A. Strumia, Charge and color breaking minima and constraints on the MSSM parameters. Nucl. Phys. B482, 24–38 (1996). hep-ph/9604417

    Google Scholar 

  79. R. Hempfling, Yukawa coupling unification with supersymmetric threshold corrections. Phys. Rev. D49, 6168–6172 (1994)

    Google Scholar 

  80. L.J. Hall, R. Rattazzi, U. Sarid, The Top quark mass in supersymmetric SO(10) unification. Phys. Rev. D50, 7048–7065 (1994). hep-ph/9306309

    Google Scholar 

  81. M.S. Carena, M. Olechowski, S. Pokorski, C. Wagner, Electroweak symmetry breaking and bottom—top Yukawa unification. Nucl. Phys. B426, 269–300 (1994). hep-ph/9402253

    Google Scholar 

  82. M.S. Carena, D. Garcia, U. Nierste, C.E. Wagner, Effective Lagrangian for the \(\bar{t} b H^{+}\) interaction in the MSSM and charged Higgs phenomenology. Nucl. Phys. B577, 88–120 (2000). hep-ph/9912516

  83. D. Noth, M. Spira, Higgs boson couplings to bottom quarks: two-loop supersymmetry-QCD corrections. Phys. Rev. Lett. 101, 181801 (2008). arXiv:0808.0087

    Article  ADS  Google Scholar 

  84. M. Carena, S. Gori, N.R. Shah, C.E. Wagner, L.-T. Wang, Light stau phenomenology and the Higgs \(\gamma \gamma \) rate. JHEP 1207, 175 (2012). arXiv:1205.5842

    Article  ADS  Google Scholar 

  85. M. Carena, S. Gori, N.R. Shah, C.E. Wagner, A 125 GeV SM-like Higgs in the MSSM and the \(\gamma \gamma \) rate. JHEP 1203, 014 (2012). arXiv:1112.3336

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Zeune .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zeune, L. (2016). Fitting the MSSM to the Observed Higgs Signal. In: Constraining Supersymmetric Models . Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-22228-8_7

Download citation

Publish with us

Policies and ethics