Skip to main content

Regularized Linear and Nonlinear Autoregressive Models for Dengue Confirmed-Cases Prediction

  • Conference paper
  • First Online:
Book cover Unconventional Computation and Natural Computation (UCNC 2015)

Abstract

Based solely on the dengue confirmed-cases of six densely populated urban areas in Brazil, distributed along the country, we propose in this paper regularized linear and nonlinear autoregressive models for one-week ahead prediction of the future behaviour of each time series. Though exhibiting distinct temporal behaviour, all the time series were properly predicted, with a consistently better performance of the nonlinear predictors, based on MLP neural networks. Additional local information associated with environmental conditions will possibly improve the performance of the predictors. However, without including such local environmental variables, such as temperature and rainfall, the performance was proven to be acceptable and the applicability of the methodology can then be directly extended to endemic areas around the world characterized by a poor monitoring of environmental conditions. For tropical countries, predicting the short-term evolution of dengue confirmed-cases may represent a decisive feedback to guide the definition of effective sanitary policies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, T.W.: Estimating linear statistical relationships. Ann. Stat. 12(1), 1–45 (1984)

    Article  MATH  Google Scholar 

  2. Battiti, R.: First and Second-order methods for learning: between steepest descent and Newton’s method. Neural Comput. 4, 141–166 (1992)

    Article  Google Scholar 

  3. Bishop, C.M.: Neural Networks for Pattern Recognition. Clarendon Press, New York (1995)

    Google Scholar 

  4. Ministério da Saúde.: Monitoramento dos casos de dengue e febre de chikungunya até a Semana Epidemiológica (SE) 53 de 2014. Bol. Epidemiológico 46, 3 (2015)

    Google Scholar 

  5. Box, G.E.P., Jenkins, G.M.: Time Series Analysis, Forecasting and Control. Holden Day, San Francisco (1976)

    MATH  Google Scholar 

  6. Bradley, E.: Time-series analysis. In: Berthold, M., Hand, D. (eds.) Intelligent Data Analysis: An Introduction, 2nd edn. Springer, Heidelberg (2003)

    Google Scholar 

  7. Chakraborty, K., Mehrotra, K., Mohan, C.K., Ranka, S.: Forecasting the behavior of multivariate time series using neural networks. Neural Netw. 5, 961–970 (1992)

    Article  Google Scholar 

  8. Cherkassky, V., Mulier, F.: Learning from Data: Concepts, Theory, and Methods, 2nd edn. Wiley IEEE Press, New York (2007)

    Book  Google Scholar 

  9. Crompton, D.W.T., Peters, P. (eds.): World Health Organization. Working to overcome the Global Impact of Neglected Tropical Diseases, First WHO Report on Neglected Tropical Diseases, Switzerland, 172 p. (2010)

    Google Scholar 

  10. Forattini, O.P.: Culicidologia Médica, vol. 1, 864 p. EDUSP, São Paulo (2002)

    Google Scholar 

  11. Girosi, F., Jones, M., Poggio, T.: Regularization theory and neural network architectures. Neural Comput. 7(2), 219–269 (1995)

    Article  Google Scholar 

  12. Haykin, S.: Neural Networks and Learning Machines, 3rd edn. Prentice-Hall, Upper Saddle River (2008)

    Google Scholar 

  13. Hopp, M.J., Foley, J.A.: Global-scale relationships between climate and the dengue fever vector Aedes aegypti. Clim. Change 48, 441–463 (2001)

    Article  Google Scholar 

  14. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)

    Article  Google Scholar 

  15. Huang, G.B., Wang, D.H., Lan, Y.: Extreme learning machines: a survey. Int. J. Mach. Learn. Cybernet. 2, 107–122 (2011)

    Article  Google Scholar 

  16. Kulaif, A.C.P., Von Zuben, F.J.: Improved regularization in extreme learning machines. In: 11th Brazilian Congress on Computational Intelligence, pp 1–6 (2013)

    Google Scholar 

  17. Luenberger, D.G.: Introduction to Linear and Nonlinear Programming. Addison-Wesley, Reading (1973)

    MATH  Google Scholar 

  18. Mairuhu, A.T.A., Wangenaar, J., Brandjes, D.M.P., Gorp, E.C.M.: Dengue: an arthropod-borne disease of global importance. Eur. J. Clin. Microbiol. Infect. Dis. 23, 425–433 (2004)

    Article  Google Scholar 

  19. Ministério da Saúde 1996. Plano Diretor de Erradicação do Aedes aegypti no Brasil, Brasília, pp. 78–79 (1996)

    Google Scholar 

  20. Moody, J.E.: The effective number of parameters:an analysis of generalization and regularization in nonlinear learning systems. In: Moody, J.E., Hanson, S.J., Lippmann, R.P. (eds.) Advances in Neural Information Processing Systems, vol. 4, pp. 847–854. Morgan Kaufmann, San Mateo (1992)

    Google Scholar 

  21. Prechelt, L.: Automatic early stopping using cross validation: quantifying the criteria. Neural Netw. 11(4), 761–767 (1998)

    Article  Google Scholar 

  22. Rodgers, J.L., Nicewander, W.A.: Thirteen ways to look at the correlation coefficient. Am. Stat. 42(1), 59–66 (1988)

    Article  Google Scholar 

  23. Teixeira, M.G.: Epidemiologia e medidas de prevenção do dengue. Informe Epidemiológico do SUS-IESUS 8, 5–8 (1999)

    MathSciNet  Google Scholar 

  24. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  25. van der Smagt, P.: Minimization methods for training feedforward neural networks. Neural Netw. 7(1), 1–11 (1994)

    Article  Google Scholar 

  26. Weigend, A.S., Gershenfeld, N.A.: Time Series Prediction: Forecasting the Future and Understanding the Past. Perseus Press, New York (1993)

    Google Scholar 

  27. Wentian, L.: Mutual information functions versus correlation functions. J. Stat. Phys. 60(5–6), 823–837 (1990)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank FAPESP (São Paulo Research Foundation), process [2014/05101-2], and CNPq for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larissa Braz Sousa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Sousa, L.B., Von Zuben, C.J., Von Zuben, F.J. (2015). Regularized Linear and Nonlinear Autoregressive Models for Dengue Confirmed-Cases Prediction. In: Calude, C., Dinneen, M. (eds) Unconventional Computation and Natural Computation. UCNC 2015. Lecture Notes in Computer Science(), vol 9252. Springer, Cham. https://doi.org/10.1007/978-3-319-21819-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21819-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21818-2

  • Online ISBN: 978-3-319-21819-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics