Skip to main content

Real Time Dense Motion Estimation Using FPGA Based Omnidirectional Video Acquisition Device

  • Chapter
  • First Online:

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 33))

Abstract

OVAD (Fraś et al. in Vision based systems for UAV applications, Springer International Publishing, pp. 123–136 [1]; Kwiatkowski et al. in Recent advances in electrical engineering and computer science, pp. 58–61 [2]) is a device, which is purposed for multi directional video acquisition. Further development of the device includes hardware implementation of time-absorbing calculations, connected with video stream processing, with utilization of FPGA (Field Programmable Gate Array). The paper presents the results of research on the problem of real time dense optical flow estimation. Furthermore, the described results are connected to the problem of parallel processing and hardware acceleration using FPGA. Proposed solution may be found as useful in many applications, both civilian and military and proves utility of FPGA based solutions in real time video processing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fraś, S., Jędrasiak, K., Kwiatkowski, J., Nawrat, A., Sobel, D.: Omnidirectional video acquisition device (OVAD). In: Vision Based Systems for UAV Applications, pp. 123–136. Springer International Publishing (2013)

    Google Scholar 

  2. Kwiatkowski, J., Sobel, D., Jędrasiak, K., Nawrat, A.: FPGA based omnidirectional video acquisition device (OVAD). In: Recent Advances in Electrical Engineering and Computer Science, pp. 58–61

    Google Scholar 

  3. Grzejszczak, T., Mikulski, M., Szkodny, T., Jedrasiak, K.: Gesture based robot control, computer vision and graphics. Lecture Notes in Computer Science, Vol. 7594, pp. 407–413. Springer (2013)

    Google Scholar 

  4. Jedrasiak, K., Nawrat, A.: Image recognition technique for unmanned aerial vehicles, computer vision and graphics. Lecture Notes in Computer Science, Vol. 5337, pp. 391–399. Springer (2009)

    Google Scholar 

  5. Nawrat, A., Jedrasiak, K.: SETh system spatio-temporal object tracking using combined color and motion features, In: 9th WSEAS International Conference on Robotics, Control and Manufacturing Technology, Hangzhou, China (2009)

    Google Scholar 

  6. Barron, J., Fleet, D., Beauchemin, S.: Performance of optical flow techniques. Int. J. Comput. Vis. 12(1), 43–77 (1994)

    Google Scholar 

  7. Jedrasiak, K., Nawrat, A., Daniec, K., Koteras, R., Mikulski, M., Grzejszczak, T.: A Prototype device for concealed weapon detection using IR and CMOS cameras fast image fusion, computer vision and graphics. Lecture Notes in Computer Science, Vol. 7594, pp. 423–432. Springer (2013)

    Google Scholar 

  8. Jędrasiak, K., Nawrat, A.: The comparison of capabilities of low light camera, thermal imaging camera and depth map camera for night time surveillance applications. Advanced Technologies for Intelligent Systems of National Border Security, pp. 117–128 (2013)

    Google Scholar 

  9. Sobel, D., Jędrasiak, K., Daniec, K., Wrona, J., Jurgaś, P., Nawrat, A.: Camera calibration for tracked vehicles augmented reality applications. In: Innovative Control Systems for Tracked Vehicle Platforms, pp. 147–162 (2014)

    Google Scholar 

  10. Kwiatkowski, J., Sobel, D., Jedrasiak, K.: FPGA based omnidirectional video acquisition device (OVAD). In: Recent Advances in Electrical Engineering and Computer Science, pp. 58–61. ISBN: 978-1-61804-249-1, 2014

    Google Scholar 

  11. Jin, S., Cho, J., Dai Pham, X., Lee, K.M., Park, S.K., Kim, M., Jeon, J.W.: FPGA design and implementation of a realtime stereo vision system. Circ. Syst. Video Technol. IEEE Trans. 20(1), 15–26 (2010)

    Article  Google Scholar 

  12. Díaz, J., Ros, E., Pelayo, F., Ortigosa, E.M., Mota, S.: FPGA-based real-time optical-flow system. Circ. Syst. Video Technol. IEEE Trans. 16(2), 274–279 (2006)

    Google Scholar 

  13. Bailey, D.G.: Design for Embedded Image Processing on FPGAs. Wiley, Hoboken (2011)

    Google Scholar 

  14. Gałuszka, A., Skrzypczyk, K., Bereska, D., Pacholczyk, M.: Re-handling operations in small container terminal operated by reach stackers. World Acad. Sci. Eng. Technol. 70, 674–677 (2010)

    Google Scholar 

  15. Czapla, T., Wrona, J.: Technology development of military applications of unmanned ground vehicles. In: Vision Based Systems for UAV Applications, Studies in Computational Intelligence, Vol. 481, pp. 293–309. ISBN: 978-3-319-00368-9, 2013

    Google Scholar 

  16. Johnston, C.T., Gribbon, K.T., Bailey, D.G.: Implementing image processing algorithms on FPGAs. In: Proceedings of the Eleventh Electronics New Zealand Conference, ENZCon’04, pp. 118–123 (2004)

    Google Scholar 

  17. Majewski, J., Zbysiński, P.: Układy FPGA w przykładach. BTC (2007)

    Google Scholar 

  18. Understanding FPGA and CPLD (online), (access: Dec 2014), access via Internet: http://www.circuitstoday.com/understanding-fpga-and-cpld/

  19. Official Xilinx website, (access: Mar 2015), access via Internet: http://www.xilinx.com/

  20. Official Digilent website, (access: Dec 2015), access via Internet: http://www.digilentinc.com/

  21. Micron, MT45W8MW16BGX datasheet (online), (access: Mar 2014), access via Internet: http://www.micron.com/

  22. Szeliski, R.: Computer vision: algorithms and applications, Springer (2010)

    Google Scholar 

  23. McCane, B., Novins, K., Crannitch, D., Galvin, B.: On benchmarking optical flow. Comput. Vis. Image Understand. 84(1), 126–143 (2001)

    Google Scholar 

  24. Optical Flow Algorithm Evaluation (online), (access: Dec 2014), access via Internet: http://of-eval.sourceforge.net/

  25. Texture Publishing to mental ray (online), (access: Dec 2014), access via Internet: https://elementalray.wordpress.com/

  26. Wu, H.: Assignment 0: hybrid images [online], [access: Dec 2014], access via Internet: http://vis.berkeley.edu/

  27. Optical Flow—Middlebury Computer Vision, (access: Dec 2014), access via Internet: http://vision.middlebury.edu/flow/data/

  28. Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. Int. J. Comput. Vis. 92(1), 1–31 (2011)

    Article  Google Scholar 

  29. Iwaneczko, P., Jedrasiak, K., Daniec, K., Nawrat, A.: A prototype of unmanned aerial vehicle for image acquisition, computer vision and graphics. Lecture Notes in Computer Science, Vol. 7594, pp. 87–94. Springer (2013)

    Google Scholar 

  30. Antosz, P., Bereska, D., Gatys, K., Niedziela, T., Szota, P.: Multiłącznik IMPRESJA IQ-element instalacji inteligentnego budynku wykorzystującej magistralę CAN. Szybkobieżne Pojazdy Gąsienicowe 1, 99–106 (2011)

    Google Scholar 

  31. Babiarz, A., Jaskot, K., Koralewicz, P.: The control system for autonomous mobile platform. In: Advanced Technologies for Intelligent Systems of National Border Security, Studies in Computational Intelligence, vol. 440, pp. 15–28 (2013)

    Google Scholar 

  32. Bereska, D., Balcewicz, R., Garczyński, M.: Implementacja magistrali CAN i protokołu CANopen w robocie edukacyjnym. Szybkobieżne Pojazdy Gąsienicowe 1, 157–162 (2008)

    Google Scholar 

  33. Campbell, J., Sukthankar, R., Illah, N.: Techniques for evaluating optical flow for visual odometry in extreme terrain. In: Proceedings 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004), Vol. 4. IEEE (2004)

    Google Scholar 

  34. Bieszczad, G., Krupiński, M., Madura, H., & Sosnowski, T.: Thermal camera for autonomous mobile platforms. In: Vision Based Systems for UAV Applications, pp. 95–114. Springer International Publishing (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kwiatkowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kwiatkowski, J., Sobel, D., Ryt, A., Domżał, M., Jędrasiak, K., Nawrat, A. (2016). Real Time Dense Motion Estimation Using FPGA Based Omnidirectional Video Acquisition Device. In: Nawrat, A., Jędrasiak, K. (eds) Innovative Simulation Systems. Studies in Systems, Decision and Control, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-319-21118-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21118-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21117-6

  • Online ISBN: 978-3-319-21118-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics