Skip to main content

The Method of Developing the Invariant Functions Vector for Objects Recognition from a Given Objects Set

  • Chapter
  • First Online:
  • 939 Accesses

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 33))

Abstract

The goal of the following paper was to develop the methodology of recognising a given object out of other objects in the grey scale images. We have presented the method which utilises moment invariants for creating model vectors which define the features of the recognised object. Moreover, we have discussed the rules of creating the model vectors which guarantee differentiation of the given object classes. We have put forward the method of recognising an object in the image. This method is based on searching the points in the image for which there is minimal distance between the model vector and current vector—calculated for each point of the image. On top of that, this study presents the examples of the object recognising by means of the developed method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bieda, R., Jaskot, K., Jedrasiak, K., Nawrat, A.: Vision system for group of mobile robots, vision based systems for UAV applications. Stud. Comput. Intell. 481, 27–45 (2013). ISBN: 978-3-319-00368-9

    Google Scholar 

  2. Nawrat, A., Jedrasiak, K.: Fast colour recognition algorithm for robotics. Problemy Eksploatacji, 69–76 (2008)

    Google Scholar 

  3. Babiarz, A., Bieda, R., Jedrasiak, K., Nawrat, A.: Machine vision in autonomous systems of detection and location of objects in digital images, vision based systems for UAV applications. Stud. Comput. Intell. 481, 3–25 (2013). ISBN: 978-3-319-00368-9

    Google Scholar 

  4. Jedrasiak, K., Andrzejczak, M., Nawrat A.: SETh: the method for long-term object tracking. In: Computer Vision and Graphics. Lecture Notes in Computer Science, vol. 8671, pp. 302–315 (2014)

    Google Scholar 

  5. Davies, D., Palmer, P.L., Mirmehdi, M.: Detection and tracking of very small low contrast objects. In: Proceedings of the 9th British Machine Vision Conference, Sept 1998

    Google Scholar 

  6. Zhang, S., Karim, M.A.: Automatic target tracking for video annotation. Opt. Eng. 43, 1867–1873 (2004)

    Article  Google Scholar 

  7. Irani, M., Peleg, S.: Improving resolution by image registration. CVGIP Graph Models and Image Process. 53, 231–239 (1991)

    Article  Google Scholar 

  8. Chesnaud, C., Refegier, P., Boulet, V.: Statistical region snake-based segmentation adapted to different physical noise models. IEEE Trans. Pattern Anal. Mach. Intell. 21, 1145–1157 (1999)

    Article  Google Scholar 

  9. Gordon, N., Ristic, B., Arulampalam, S.: Beyond the Kalman Filter: Particle Filters for Tracking Applications. Artech House, Boston (2004)

    Google Scholar 

  10. Sharp, C., Shakernia, O., Sastry, S.: A vision system for landing an unmanned aerial vehicle. In: Proceedings of the 2001 IEEE International Conference on Robotics and Automation, vol. 2, pp. 1720–1727. IEEE, Los Alamitos (2001)

    Google Scholar 

  11. Casbeer, D., Li, S., Beard, R., Mehra, R., McLain, T.: Forest Fire Monitoring With Multiple Small UAVs, Porland, OR, April (2005)

    Google Scholar 

  12. Papoulis, A.: Probability, Random Variables, and Stochastic Processes, 3rd edn. McGraw-Hill, New York (1991)

    Google Scholar 

  13. Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis and Machine Vision: Thompson Learning, Toronto (2008)

    Google Scholar 

  14. Bibik, P., Narkiewicz, J.: Helicopter optimal control after power failure using comprehensive dynamic model. J. Guid. Control Dyn. 35, 1354–1362 (2012)

    Article  Google Scholar 

  15. Bibik, P., Narkiewicz, J.: Helicopter modeling and optimal control in autorotation. Ann. Proc. Am. Helicopter Soc. 64(2), 986 (2008)

    Google Scholar 

  16. Bieda, R., Grygiel, R.: Wyznaczanie Orientacji Obiektu w Przestrzeni z Wykorzystaniem Naiwnego Filtru Kalmana. Przeglad Elektrotechniczny 90, 34–41 (2014)

    Google Scholar 

  17. Galuszka, A., Bereska, D., Simek, K., Skrzypczyk, K., Daniec, K.: Wykorzystanie Elementów Teorii Grafów w Systemie Analiz Kryminalnych. Przeglad Elektrotechniczny 86, 278–283 (2010)

    Google Scholar 

  18. Daniec, K., Jedrasiak, K., Koteras, R., Nawrat, A.: Embedded micro inertial navigation system. Appl. Mech. Mater. 249, 1234–1246 (2013)

    Google Scholar 

  19. Sroka, M., Sciegienka, P., Babiarz, A., Jaskot, K.: Prototyp bezzalogowego pojazdu podwodnego - uklad stabilizacji i utrzymania zadanego kursu. Przeglad Elektrotechniczny 89, 205–217 (2013)

    Google Scholar 

  20. Jaskot, K., Babiarz, A., Sroka, M., Sciegienka, P.: Prototyp bezzalogowego pojazdu podwodnego - konstrukcja mechaniczna, panel operatora. Przeglad Elektrotechniczny 89, 52–67 (2013)

    Google Scholar 

  21. Jedrasiak, K., Nawrat, A., Daniec, K., Koteras, R., Mikulski, M., Grzejszczak, T.: A prototype device for concealed weapon detection using IR and CMOS cameras fast image fusion. In: Computer Vision and Graphics. Lecture Notes in Computer Science, vol. 7594, pp. 423–432 (2012)

    Google Scholar 

  22. Ulinowicz, M., Narkiewicz, J.: Modeling and identification of actuator for flap deflection. J. Autom. Mob. Robot. Intell. Syst. 5, 35–40 (2011)

    Google Scholar 

  23. Barnat, W., Niezgota, T., Panowicz, R., Sybilski, K.: The influence of conical composite filling on energy absorbtion during the progressive fracture process. WIT Trans. Model. Simul. 51, 625–633 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zygmunt Kuś .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kuś, Z., Nawrat, A. (2016). The Method of Developing the Invariant Functions Vector for Objects Recognition from a Given Objects Set. In: Nawrat, A., Jędrasiak, K. (eds) Innovative Simulation Systems. Studies in Systems, Decision and Control, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-319-21118-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21118-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21117-6

  • Online ISBN: 978-3-319-21118-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics