Skip to main content

Combined Fresh Water and Power Production: State of the Art

  • Chapter
Concentrating Solar Power and Desalination Plants

Abstract

This chapter deals with the combined fresh water and power production by concentrating solar power (CSP) and desalination plants (CSP + D). First, the cogeneration of electricity and desalinated water from conventional power plants is described to provide a better understanding of the integration processes. Later in the chapter, the CSP plant technologies available are described, focusing particularly on parabolic-trough collectors. Finally, the latest studies related to CSP + D plants and the existing refrigeration systems within CSP plants are expounded.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PT:

Parabolic-trough

CSP + D:

Concentrating solar power and desalination

PSA:

Plataforma Solar de Almería

RO:

Reverse osmosis

MED:

Multi-effect distillation

MSF:

Multi-stage flash

MED-TVC:

Multi-effect distillation with thermal vapour compression

SEG:

Solar electric generating station

DNI:

Direct normal irradiance (W/m2)

LEC:

Levelised electricity cost ($/MWh)

References

  • Adak, A. K., & Tewari, P. K. (2014). Technical feasibility study for coupling a desalination plant to an advanced heavy water reactor. Desalination, 337, 76–82.

    Article  Google Scholar 

  • Alexopoulos, S., & Hoffschmidt, B. (2010). Solar tower power plant in Germany and future perspectives of the development of the technology in Greece and Cyprus. Renewable Energy, 35, 1352–1356.

    Article  Google Scholar 

  • Al-Mutaz, I. S. (2003). Coupling of a nuclear reactor to hybrid RO-MSF desalination plants. Desalination, 157, 259–268.

    Article  Google Scholar 

  • Almulla, A., Hamad, A., & Gadalla, M. (2005). Integrating hybrid systems with existing thermal desalination plants. Desalination, 174, 171–192.

    Article  Google Scholar 

  • Ansari, K., Sayyaadi, H., & Amidpour, M. (2010). Thermoeconomic optimization of a hybrid pressurized water reactor (PWR) power plant coupled to a multi effect distillation desalination system with thermo-vapor compressor (MEDTVC). Energy, 35, 1981–1996.

    Article  Google Scholar 

  • Alrobaei, H. (2008). Novel integrated gas turbine solar cogeneration power plant. Desalination, 220, 574–587.

    Article  Google Scholar 

  • Barigozzi, G., Perdichizzi, A., & Ravelli, S. (2011). Wet and dry cooling systems optimization applied to a modern waste-to-energy cogeneration heat and power plant. Applied Energy, 88, 1366–1376.

    Article  Google Scholar 

  • Blanco, J., Malato, S., Fernández-Ibañez, P., Alarcón, D., Gernjak, W., & Maldonado, M. I. (2009). Review of feasible solar energy applications to water processes. Renewable and Sustainable Energy Reviews, 13, 1437–1445.

    Article  Google Scholar 

  • Blanco, J., Alarcón, D., Zaragoza, G., Guillén, E., Palenzuela, P., & Ibarra, M. (2010, September 21–24). Expanding CSP research frontier: Challenges to be addressed by combined solar power and desalination plants. In: Proceedings of the 15th SolarPACES Symposium. The CSP Conference: Electricity, Fuels and Clean Water from Concentrated Solar Energy, Perpignan, France.

    Google Scholar 

  • Blanco-Marigorta, A. M., Sanchez-Henríquez, M. V., & Peña-Quintana, J. A. (2011). Exergetic comparison of two different cooling technologies for the power cycle of a thermal power plant. Energy, 36, 1966–1972.

    Article  Google Scholar 

  • Bouzayani, N., Galanis, N., & Orfi, J. (2009). Thermodynamic analysis of combined electric power generation and water desalination plants. Applied Thermal Engineering, 29, 624–633.

    Article  Google Scholar 

  • Braun, F. G., Hooper, E., Wand, R., & Zloczysti, P. (2011). Holding a candle to innovation in concentrating solar power technologies: A study drawing on patent data. Energy Policy, 39, 2441–2456.

    Article  Google Scholar 

  • Buck, R., Lüpfert, E., & Tellez, F. (2000, March). Receiver for solar-hybrid gas turbine and combined cycle systems (REFOS). In: Proceedings IEA Solar Thermal 2000 Conference, Sydney, Australia. Retrieved from http://www.dlr.de/TT

  • Casimiro, S., Cardoso, J., Alarcón-Padilla, D. C., Turchi, C., Ioakimidis, C., & Farinha Mendes, J. (2013). Modeling multi effect distillation powered by CSP in TRNSYS. Energy Procedia, 49, 2241–2250.

    Article  Google Scholar 

  • Cengel, Y. A., & Boles, M. A. (2007). Thermodynamics. An engineering approach (6th ed.). New York: McGraw Hill.

    Google Scholar 

  • Clelland, D. W., & Stewart, J. M. (1966). The optimisation and design of large scale multi-stage flash distillation plants. Desalination, 1, 61–76.

    Article  Google Scholar 

  • Darwish, M. A., & Al Najem, N. (2004). Co-generation power desalting plants: New outlook with gas turbines. Desalination, 161, 1–12.

    Article  Google Scholar 

  • Darwish, M. A., Al-Awadhi, F. M., Akbar, A., & Darwish, A. (2009a). Alternative primary energy for power desalting plants in Kuwait: The nuclear option I. Desalination and Water Treatment, 1, 25–41.

    Article  Google Scholar 

  • Darwish, M. A., Eleshaky, M. E., Al-Najem, N. M., & Alazmi, B. S. A. (2009b). Alternative primary energy for power desalting plants in Kuwait: The nuclear option II-The steam cycle and its combination with desalting units. Desalination and Water Treatment, 1, 42–57.

    Article  Google Scholar 

  • de Lalaing, J. (2001). The Solarmundo project—Advanced Fresnel technology for thermal power generation, Conferences in Frankfurt and Brussels, http://www.solarmundo.de

  • Desertec Foundation. (2010). Red paper: An overview of the Desertec concept. Hamburg, Germany: Desertec Foundation. Retrieved June 25, 2015 from http://www.desertec.org/fileadmin/downloads/desertec-foundation_redpaper_3rd-edition_english.pdf

  • Eck, M. (2009, September 15–18). Test and demonstration of the direct steam generation at 500°C. In: Proceedings of the 15th SolarPACES Symposium. The CSP Conference: Electricity, Fuels and Clean Water from Concentrated Solar Energy, Berlin, Germany.

    Google Scholar 

  • Eck, M., & Steinmann, W. (2005). Modelling and design of direct solar steam generating collector fields. Journal of Solar Energy Engineering, 127, 371–380.

    Article  Google Scholar 

  • El-Nashar, A. M. (2001). Cogeneration for power and desalination: State of the art review. Desalination, 134, 7–28.

    Article  Google Scholar 

  • El-Nashar, A. M., & El-Baghdady, A. (1984). Analysis of water desalination and power generation expansion plans for the Emirate of Abu Dhabi—A preliminary study. Desalination, 49, 271–292.

    Article  Google Scholar 

  • Fend, T., Pitz-Paal, R., Reutter, O., Bauer, J., & Hoffschmidt, B. (2004). Two novel high-porosity materials as volumetric receivers for concentrated solar radiation. Solar Energy Materials and Solar Cells, 84, 291–304.

    Article  Google Scholar 

  • Fernández-García, A., Zarza, E., Valenzuela, L., & Pérez, M. (2010). Parabolic-trough solar collectors and their applications. Renewable and Sustainable Energy Reviews, 14, 1695–1721.

    Article  Google Scholar 

  • Fichtner and DLR. (2011). MENA regional water outlook. Part II: desalination using renewable energy. Stuttgart, Germany. Retrieved from http://www.dlr.de/tt/Portaldata/41/Resources/dokumente/institut/system/projects/MENA_REGIONAL_WATER_OUTLOOK.pdf

  • Fylaktos, N., Mitra, I., Tzamtzis, G., & Papanicolas, C. M. (2014). Economic analysis of an electricity and desalinated water cogeneration plant in Cyprus. Desalination and Water Treatment. doi:10.1080/19443994.2014.940219.

    Google Scholar 

  • García-Casals, V. (2000). Optimización del acoplamiento entre subsistema solar y ciclo termodinámico en plantas termosolares. Doctoral Thesis. Madrid, Spain: Universidad Politécnica de Madrid.

    Google Scholar 

  • Gastli, A., Charabi, Y., & Zekri, S. (2010). GIS-based assessment of combined CSP electric power and seawater desalination plant for Duqum—Oman. Renewable and Sustainable Energy Reviews, 14, 821–827.

    Article  Google Scholar 

  • Ghobeity, A., Noone, C. J., Papanicolas, C. N., & Mitsos, A. (2011). Optimal time-invariant operation of a power and water cogeneration solar-thermal plant. Solar Energy, 85, 2295–2320.

    Article  Google Scholar 

  • Hamdan, L. K., Zarei, M., Chianelli, R. R., & Gardner, E. (2008). Sustainable water and energy in Gaza Strip. Renewable Energy, 33, 1137–1146.

    Article  Google Scholar 

  • Hamed, O. A. (2005). Overview of hybrid desalination systems—Current status and future prospects. Desalination, 186, 207–214.

    Article  Google Scholar 

  • Hamed, O. A., Al-Washmi, H. A., & Al-Otaibi, H. A. (2006). Thermoeconomic analysis of a power/water cogeneration plant. Energy, 31, 2699–2709.

    Article  Google Scholar 

  • Hornburg, C. D., & Cruver, J. E. (1977). Dual purpose power/water plants utilizing both distillation and reverse osmosis. Desalination, 20, 27–42.

    Article  Google Scholar 

  • Hosseini, S. R., Amidpour, M., & Behbahaninia, A. (2011). Thermoeconomic analysis with reliability consideration of a combined power and multi stage flash desalination plant. Desalination, 278, 424–433.

    Article  Google Scholar 

  • Hosseini, S. R., Amidpour, M., & Shakib, S. E. (2012). Cost optimization of a combined power and water desalination plant with exergetic, environment and reliability consideration. Desalination, 285, 123–130.

    Article  Google Scholar 

  • Kaltschmitt, M., Streicher, M., & Wiese, A. (2007). Renewable energy. Berlin, Heidelberg: Springer.

    Book  Google Scholar 

  • Kamal, I. (2005). Integration of seawater desalination with power generation. Desalination, 180, 217–229.

    Article  Google Scholar 

  • Kronenberg, G. (1996). Cogeneration with the LT-MED desalination process. Desalination, 108, 287–294.

    Article  Google Scholar 

  • Kronenberg, G., & Lokiec, F. (2001). Low-temperature distillation processes in single- and dual-purpose plants. Desalination, 136, 189–197.

    Article  Google Scholar 

  • Luo, C., Zhang, N., Lior, N., & Lin, H. (2011). Proposal and analysis of a dual-purpose system integrating a chemically recuperated gas turbine cycle with thermal seawater desalination. Energy, 36, 3791–3803.

    Article  Google Scholar 

  • Madani, A. A. (1996). Analysis of a new combined desalination-power generation plant. Desalination, 105, 199–205.

    Article  Google Scholar 

  • Mahbub, F., Hawlader, M. N. A., & Mujumdar, A. S. (2009). Combined water and power plant (CWPP)-a novel desalination technology. Desalination and Water Treatment, 5, 172–177.

    Article  Google Scholar 

  • Manesh, M. H., & Amidpour, M. (2009). Multi-objective thermoceconomic optimization of coupling MSF desalination with PWR nuclear power plant through evolutionary algorithms. Desalination, 249, 1332–1344.

    Article  Google Scholar 

  • Solar Millennium. (2009). The parabolic trough power plants Andasol 1 to 3: The largest solar power plants in the world—Technology premiere in Europe. Erlangen: Solar Millennium. Retrieved 26 June, 2015, from http://www.rwe.com/web/cms/mediablob/en/1115150/data/1115144/1/rwe-innogy/sites/solar-power/andasol-3/facts-figures/Further-information-about-Andasol.pdf

  • Moser, M., Trieb, F., & Kern, J. (2010, October 3–7). Combined water and electricity production on industrial scale in the MENA countries with concentrating solar power. In: Proceedings of EuroMed Conference: Desalination for Clean Water and Energy—Cooperation Among Mediterranean countries, Tel Aviv, Israel.

    Google Scholar 

  • Moser, M., Trieb, F., Kern, J., Allal, H., Cottret, N., Scharfe, J., Tomasek, M., & Savoldi, E. (2011). The MED-CSD project: Potential for concentrating solar power desalination development in Mediterranean countries. Journal of Solar Energy Engineering, 133, 031012. doi:10.1115/1.4004352 (8 pages).

    Article  Google Scholar 

  • Mussati, S., Aguirre, P., & Scenna, N. (2003). Dual-purpose desalination plants. Part II optimal configuration. Desalination, 153, 185–189.

    Article  Google Scholar 

  • OECD/IEA. (2014). World Energy Outlook 2014. Paris: International Energy Agency. Retrieved from https://www.iea.org/publications/freepublications/publication/WEO_2014_ES_English_WEB.pdf.

    Google Scholar 

  • Olwig, R., Hirch, T., Sattler, C., Glade, H., Schmeken, L., & Will, S. (2012). Techno-economic analysis of combined concentrating solar power and desalination plant configurations in Israel and Jordan. Desalination and Water Treatment, 41, 9–25.

    Article  Google Scholar 

  • Palenzuela, P., Zaragoza, G., Alarcón, D., & Blanco, J. (2011a). Simulation and evaluation of the coupling of desalination units to parabolic-trough solar power plants in the Mediterranean region. Desalination, 281, 379–387.

    Google Scholar 

  • Palenzuela, P., Zaragoza, G., Alarcón-Padilla, D. C., Guillén, E., Ibarra, M., & Blanco, J. (2011b). Assessment of different configurations for combined parabolic-trough (PT) solar power and desalination plants in arid regions. Energy, 36, 4950–4958.

    Google Scholar 

  • Palenzuela, P., Zaragoza, G., Alarcón-Padilla, D. C., & Blanco, J. (2013). Evaluation of cooling technologies of concentrated solar power plants and their combination with desalination in the mediterranean area. Applied Thermal Engineering, 50, 1514–1521.

    Article  Google Scholar 

  • Palenzuela, P., Alarcón-Padilla, D. C., & Zaragoza, G. (2015). Large-scale solar desalination by combination with CSP: Technoeconomic analysis of different options for the Mediterranean Sea and the Arabian Gulf. Desalination, 366, 130–138.

    Article  Google Scholar 

  • Pharabod, F., & Philibert, C. (1991). LUZ solar power plants. Success in California and worldwide prospects. Cologne, Germany: DLR/SolarPACES.

    Google Scholar 

  • Pitz-Paal, R., Amin, A., Oliver Bettzuge, M., Eames, P., Flamant, G., & Fabrizi, F. (2012). Concentrating solar power in Europe, the Middle East and North Africa: A review of development issues and potential to 2050. Journal of Solar Energy Engineering, 134, 024501–024506.

    Article  Google Scholar 

  • Price, H., & Kearney, D. (1999, January). Parabolic-trough technology roadmap: A pathway for sustained commercial development and deployment of parabolic-trough technology (Final Report). Golden, CO: U.S. Department of Energy, National Renewable Energy Laboratory. Retrieved June 25, 2015, from http://library.umac.mo/ebooks/b12549289.pdf

  • Rensonnet, T., Uche, J., & Serra, L. (2007). Simulation and thermoeconomic analysis of different configurations of gas turbine (GT)-based dual-purpose power and desalination plants (DPPDP) and hybrid plants (HP). Energy, 32, 1012–1023.

    Article  Google Scholar 

  • Richter, C., & Dersch, J. (2009, September 15–18). Methods for reducing cooling water consumption in solar thermal power plants. In: Proceedings of the 15th SolarPACES Symposium. The CSP conference: Electricity, fuels and clean water from concentrated solar energy, Berlin, Germany.

    Google Scholar 

  • Sandia National Laboratories. (2008). Sandia, Stirling Energy Systems set new world record for solar-to-grid conversion efficiency. Albuquerque, New Mexico: Sandia National Laboratories. Retrieved June 25, 2015, from http://www.sandia.gov/news/resources/releases/2008/solargrid.html

  • Schmitz, K. D., Riffelmann, K. J., & Thaufelder, T. (2009, September 15–18). Techno-economic evaluation of the cogeneration of solar electricity and desalinated water. In: Proceedings of the 15th SolarPACES Symposium. The CSP Conference: Electricity, Fuels and Clean Water from Concentrated Solar Energy, Berlin, Germany.

    Google Scholar 

  • Shakib, S. E., Amidpour, M., & Aghanajafi, C. (2012). Simulation and optimization of multi effect desalination coupled to a gas turbine plant with HRSG consideration. Desalination, 285, 366–376.

    Article  Google Scholar 

  • Tamme, R., Laing, D., & Steinmann, W-D. (2004). Advanced Thermal Energy Storage Technology for Parabolic Trough. Journal of Solar Energy Engineering, 126, 794–800.

    Article  Google Scholar 

  • Téllez, D., Lom, H., Chargoy, P., Rosas, L., Mendoza, M., Coatl, M., Macías, N., & Reyes, R. (2009). Evaluation of technologies for a desalination operation and disposal in the Tularosa Basin, New Mexico. Desalination, 249, 983–990.

    Article  Google Scholar 

  • Trieb, F., & Müller-Steinhagen, H. (2008). Concentrating solar power for seawater desalination in the Middle East and North Africa. Desalination, 220, 165–183.

    Article  Google Scholar 

  • Trieb, F. et al. (2001). Electricity and water from solar powered steam cycle plants (Strom und Trinkwasser aus solaren Dampfkraftwerken). Energiewirtschaftliche Tagesfragen 51(6):386–390. Retrieved from www.dlr.de/tt/system.

  • Trieb, F., Nitsch, J., Kronshage, S., Schillings, C., Brischke, L-A., Knies, G., & Czisch, G. (2002). Combined solar power and desalination plants for the Mediterranean region-sustainable energy supply using large-scale solar thermal power plants. Desalination, 153, 39–46.

    Article  Google Scholar 

  • Trieb, F., Müller-Steinhagen, H., Kern, J., Scharfe, J., Kabariti, M., & Al Taher, A. (2009). Technologies for large scale seawater desalination using concentrated solar radiation. Desalination, 235, 33–43.

    Article  Google Scholar 

  • Turchi, G., & Kutscher, C. (2009). Water use in concentrating solar power (CSP), Tucson. Retrieved from http://www.swhydro.arizona.edu/renewable/presentations/thursday/turchi.pdf

  • Uche, J., Serra, L., & Valero, A. (2001). Thermoeconomic optimization of a dual-purpose power and desalination plant. Desalination, 136, 147–158.

    Article  Google Scholar 

  • US DoE. (2006). Energy demands on water resources: Report to Congress on the Interdependency of Energy & Water. Retrieved from http://powi.ca/wp-content/uploads/2012/12/Energy-Demands-on-Water-Resources-Report-to-Congress-2006.pdf

  • US DoE. (2009). Concentrating solar power commercial application study: Reducing water consumption of concentrating solar power electricity generation. Washington, DC: U.S. Department of Energy. Retrieved June 25, 2015, from https://www1.eere.energy.gov/solar/pdfs/csp_water_study.pdf

  • Wang, Y., & Lior, N. (2007). Performance analysis of combined humidified gas turbine power generation and multi-effect thermal vapor compression desalination systems: Part 2: The evaporative gas turbine based system and some discussions. Desalination, 207, 243–256.

    Article  Google Scholar 

  • Webber, M. E. (2008). Catch-22: Water vs. Energy. Scientific American, 18, 34–41.

    Article  Google Scholar 

  • Weinrebe, G., Bönkhe, M., & Trieb, F. (1998). Life cycle assessment of an 80 MW SEGS plant and a 30 MW PHOEBUS Power Tower. In: Proceedings of the ASME International Solar Energy Conference, Albuquerque. Retrieved from http://www.dlr.de/system

  • Winter, C. J., Sizmann, R. L., & Vant-Hull, L. L. (1990). Solar power plants: Fundamentals, technology, systems, economics. Berlín, Germany: Springer. ISBN 3-540-18897-5.

    Google Scholar 

  • Yang, L., & Shen, S. (2007). Assessment of energy requirement for water production at dual-purpose plants in China. Desalination, 205, 214–223.

    Article  Google Scholar 

  • Zachary, J., & Layman, C. M. (2009, September 15–18). Integration of desalination in hybrids for solar and conventional fossil power plants. In: Proceedings of the 15th SolarPACES Symposium. The CSP Conference: Electricity, Fuels and Clean Water from Concentrated Solar Energy, Berlin, Germany.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Palenzuela, P., Alarcón-Padilla, DC., Zaragoza, G. (2015). Combined Fresh Water and Power Production: State of the Art. In: Concentrating Solar Power and Desalination Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-20535-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20535-9_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20534-2

  • Online ISBN: 978-3-319-20535-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics