Skip to main content

Combinatorial Stratifications and Minimality of Two-Arrangements

  • Chapter
Combinatorial Methods in Topology and Algebra

Part of the book series: Springer INdAM Series ((SINDAMS,volume 12))

  • 1211 Accesses

Abstract

I present a result according to which the complement of any affine 2-arrangement in \(\mathbb{R}^{d}\) is minimal, that is, it is homotopy equivalent to a cell complex with as many i-cells as its ith Betti number. To this end, we prove that the Björner–Ziegler complement complexes, induced by combinatorial stratifications of any essential 2-arrangement, admit perfect discrete Morse functions. This result extend previous work by Falk, Dimca–Papadima, Hattori, Randell, and Salvetti–Settepanella, among others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adiprasito, K.: Combinatorial stratifications and minimality of 2-arrangements (2012, preprint). arXiv:1211.1224. http://arxiv.org/abs/1211.1224

  2. Adiprasito, K., Benedetti, B.: Subdivisions, shellability and the Zeeman conjecture (2012, preprint). arXiv:1202.6606. http://arxiv.org/abs/1202.6606

  3. Artal Bartolo, E., Carmona Ruber, J., Cogolludo Agustín, J.I., Marco Buzunáriz, M.Á.: Invariants of combinatorial line arrangements and Rybnikov’s example. In: Singularity Theory and Its Applications. Advanced Studies in Pure Mathematics, vol. 43, pp. 1–34. Mathematical Society of Japan, Tokyo (2006)

    Google Scholar 

  4. Bing, R.H.: Some aspects of the topology of 3-manifolds related to the Poincaré conjecture. In: Lectures on Modern Mathematics, vol. II, pp. 93–128. Wiley, New York (1964)

    Google Scholar 

  5. Björner, A., Ziegler, G.M.: Combinatorial stratification of complex arrangements. J. Am. Math. Soc. 5, 105–149 (1992)

    Article  MATH  Google Scholar 

  6. Cohen, D.C., Suciu, A.I.: Homology of iterated semidirect products of free groups. J. Pure Appl. Algebra 126, 87–120 (1998). doi:10.1016/S0022-4049(96)00153-3. http://dx.doi.org/10.1016/S0022-4049(96)00153-3

  7. Dimca, A., Papadima, S.: Hypersurface complements, Milnor fibers and higher homotopy groups of arrangements. Ann. Math. 158(2), 473–507 (2003). doi:10.4007/annals2003.158.473. http://dx.doi.org/10.4007/annals.2003.158.473

  8. Falk, M.J.: Homotopy types of line arrangements. Invent. Math. 111, 139–150 (1993). doi:10.1007/BF01231283. http://dx.doi.org/10.1007/BF01231283

  9. Forman, R.: Morse theory for cell complexes. Adv. Math. 134, 90–145 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Goresky, R.M., MacPherson, R.D.: Stratified Morse theory. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 14. Springer, Berlin (1988)

    Google Scholar 

  11. Hamm, H., Lê, D.T.: Un théorème du type de Lefschetz. C. R. Acad. Sci. Paris Sér. A-B 272, A946–A949 (1971)

    Google Scholar 

  12. Hattori, A.: Topology of C n minus a finite number of affine hyperplanes in general position. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 22, 205–219 (1975)

    MATH  MathSciNet  Google Scholar 

  13. Kirby, R.C.: Problems in low–dimensional topology (1995). Available online at Robion Kirby’s webpage, http://math.berkeley.edu/~kirby/problems.ps.gz

  14. Papadima, S., Suciu, A.: The spectral sequence of an equivariant chain complex and homology with local coefficients. Trans. Am. Math. Soc. 362(5), 2685–2721 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Randell, R.: Morse theory, Milnor fibers and minimality of hyperplane arrangements. Proc. Am. Math. Soc. 130, 2737–2743 (2002). doi:10.1090/S0002-9939-02-06412-2. http://dx.doi.org/10.1090/S0002-9939-02-06412-2

  16. Rybnikov, G.L.: On the fundamental group of the complement of a complex hyperplane arrangement. Technical Report, DIMACS, Rutgers University, Piscataway (1994)

    Google Scholar 

  17. Rybnikov, G.L.: On the fundamental group of the complement of a complex hyperplane arrangement. Funktsional. Anal. i Prilozhen. 45, 71–85 (2011)

    Article  MathSciNet  Google Scholar 

  18. Salvetti, M.: Topology of the complement of real hyperplanes in C n. Invent. Math. 88, 603–618 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  19. Salvetti, M., Settepanella, S.: Combinatorial Morse theory and minimality of hyperplane arrangements. Geom. Topol. 11, 1733–1766 (2007). doi:10.2140/gt.2007.11.1733. http://dx.doi.org/10.2140/gt.2007.11.1733

  20. Yoshinaga, M.: Hyperplane arrangements and Lefschetz’s hyperplane section theorem. Kodai Math. J. 30, 157–194 (2007). doi:10.2996/kmj/1183475510. http://dx.doi.org/10.2996/kmj/1183475510

  21. Zeeman, E.C.: On the dunce hat. Topology 2, 341–358 (1964)

    Article  MathSciNet  Google Scholar 

  22. Ziegler, G.M.: On the difference between real and complex arrangements. Math. Z. 212, 1–11 (1993). doi:10.1007/BF02571638. http://dx.doi.org/10.1007/BF02571638

  23. Ziegler, G.M., Živaljević, R.T.: Homotopy types of arrangements via diagrams of spaces. Math. Ann. 295, 527–548 (1993)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim A. Adiprasito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Adiprasito, K.A. (2015). Combinatorial Stratifications and Minimality of Two-Arrangements. In: Benedetti, B., Delucchi, E., Moci, L. (eds) Combinatorial Methods in Topology and Algebra. Springer INdAM Series, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-20155-9_3

Download citation

Publish with us

Policies and ethics